
GEORGIA DOT RESEARCH PROJECT 17-32 

Final Report 

VALIDATING CHANGE OF SIGN AND PAVEMENT 

CONDITIONS AND EVALUATING SIGN 

RETROREFLECTIVITY CONDITION ASSESSMENT ON 

GEORGIA’S INTERSTATE HIGHWAYS USING 3D 

SENSING TECHNOLOGY 

Office of Performance-based Management and Research 
600 West Peachtree St. NW | Atlanta, GA 30308 





1.Report No.:

FHWA-GA-20-1732 

2. Government Accession

No.: N/A 

3. Recipient's Catalog No.:

 N/A 

4. Title and Subtitle:

Validating Change of Sign and Pavement Conditions and 

Evaluating Sign Retroreflectivity Condition Assessment 

on Georgia’s Interstate Highways Using 3D Sensing 

Technology 

5. Report Date: November 2019

6. Performing Organization Code:

 N/A 

7. Author(s): Yichang (James) Tsai, Ph.D.;

Zhaohua Wang, Ph.D. 
8. Performing Organ. Report No.: 17-32

9. Performing Organization Name and Address:

Georgia Institute of Technology

790 Atlantic Drive

Atlanta, GA 30332-0355

10. Work Unit No.:

11. Contract or Grant No.: PI# A180701

12. Sponsoring Agency Name and Address:

 Georgia Department of Transportation 

Office of Performance-based Management and Research 

600 West Peachtree St. NW 

Atlanta, GA, 30308 

13. Type of Report and Period Covered:

Final; December 2017 – November 2019

14. Sponsoring Agency Code:

15. Supplementary Notes:

16. Abstract:

Traffic signs are important for roadway safety and provide critical guidance to road users with traffic 

regulations, road hazard warnings, destination information, and other geographic information.  Pavement 

surface distress data is critical for monitoring the statewide pavement conditions, identifying maintenance 

activities, and optimally allocating pavement funds.  In 2015, the Georgia Department of Transportation 

(GDOT) implemented a comprehensive sign inventory and asphalt pavement condition assessment on 

Georgia’s interstate highways through a research project (RP 15-11).  To track the existence and condition 

change of signs, a new procedure was developed by utilizing the existing sign inventory and condition data.  

Meanwhile, a sign retro-reflectivity condition assessment method using mobile LiDAR was explored, and a 

case study was developed to demonstrate the use of the proposed method.  The asphalt pavement condition of 

interstate highways was updated using newly collected 3D pavement laser data.  In addition, the condition data 

of jointed plain concrete pavement (JPCP) and international roughness index (IRI) on interstate highways were 

collected for this project using the 3D pavement laser data.   

17. Key Words:

Interstate; Sign Inventory; PACES; Image; Mobile LiDAR; 3D Laser 

18. Distribution Statement: No

Restriction 

19. Security Classification (of this report):

 Unclassified 

20. Security classification (of

this page): Unclassified 

21. Number

of Pages: 141 

22. Price:

Free 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Contract Research 

GDOT Research Project No. 17-32 

Final Report 

 

VALIDATING CHANGE OF SIGN AND PAVEMENT CONDITIONS AND 

EVALUATING SIGN RETROREFLECTIVITY CONDITION ASSESSMENT 

ON GEORGIA’S INTERSTATE HIGHWAYS USING 3D SENSING 

TECHNOLOGY 

By 

Yichang (James) Tsai, Ph.D., P.E. 

Zhaohua Wang, Ph.D., P.E. 

 

Georgia Institute of Technology 

 

Contract with 

Georgia Department of Transportation 

 

In cooperation with 

U.S. Department of Transportation 

Federal Highway Administration 

 

November 2019 

 

The contents of this report reflect the views of the author(s) who is (are) responsible for 
the facts and the accuracy of the data presented herein. The contents do not necessarily 
reflect the official views or policies of the Georgia Department of Transportation or of the 
Federal Highway Administration. This report does not constitute a standard, specification, 
or regulation. 



 

 

i 

 

  



 

 

ii 

 

TABLE OF CONTENTS 

TABLE OF CONTENTS ii 

LIST OF TABLES vi 

LIST OF FIGURES viii 

ACKNOWLEDGEMENTS xiii 

EXECUTIVE SUMMARY xv 

CHAPTER 1. INTRODUCTION 1 

RESEARCH BACKGROUND AND RESEARCH NEED ································ 1 

RESEARCH OBJECTIVES ···································································· 3 

REPORT ORGANIZATION ··································································· 4 

CHAPTER 2. OVERVIEW OF THE SENSING DATA COLLECTION 5 

GEORGIA TECH SENSING VEHICLE (GTSV) ··········································· 5 

INTERSTATE HIGHWAY SYSTEM IN GEORGIA ······································ 9 

CHAPTER 3. SIGN INVENTORY BASED ON PREVIOUSLY COLLECTED 

DATA 11 

KEY CHARACTERISTICS OF TRAFFIC SIGNS ······································· 11 

PROCEDURE TO CREATE UPDATED SIGN INVENTORY USING 

PREVIOUSLY COLLECTED DATA ······················································ 16 

RESULTS ······················································································· 17 



 

 

iii 

 

COMPARISON OF 2015 AND 2017 SIGN INVENTORY ····························· 27 

SUMMARY ····················································································· 30 

CHAPTER 4. SIGN RETRO-REFLECTIVITY CONDITION ASSESSMENT 

USING MOBILE LIDAR 33 

INTRODUCTION ·············································································· 34 

CURRENT PRACTICES TO MEET THE MINIMUM RETRO-REFLECTIVITY 

REQUIREMENT FOR THE TRAFFIC SIGNS ··········································· 35 

A COST-EFFECTIVE MEANS TO ASSESS SIGN RETRO-RETROFLECTIVITY 

CONDITION ···················································································· 40 

DEVELOPMENT OF SIGN RETRO-REFLECTIVITY CONDITION ASSESSMENT 

USING MOBILE LIDAR ····································································· 42 

VALIDATION OF SIGN RETRO-REFLECTIVITY CONDITION ASSESSMENT 49 

CASE STUDY ·················································································· 55 

SIGN RETO-INTENSITY CHANGE ANALYSIS (2015 – 2018) ······················ 58 

SUMMARY ····················································································· 61 

CHAPTER 5. ASPHALT PAVEMENT CONDITION EVALUATION 65 

DISTRESSES DEFINED IN PACES ······················································· 65 

STREAMLINED PROCEDURE ····························································· 67 

RESULTS ······················································································· 72 

COMPARISON WITH 2015 PAVEMENT CONDITION DATA ······················ 75 



 

 

iv 

 

SUMMARY ····················································································· 78 

CHAPTER 6. PCC PAVEMENT (JPCP) CONDITION EVALUATION 79 

OVERVIEW OF JPCP AND RATING SYSTEM ········································· 79 

STREAMLINED PROCEDURE USING 3D PAVEMENT DATA ···················· 81 

RESULTS ······················································································· 87 

COMPARISON WITH HISTORICAL CPACES RATING ····························· 90 

CHAPTER 7. SMOOTHNESS EVALUATION USING 3D PAVEMENT DATA

 93 

METHOD FOR IRI MEASUREMENT USING 3D LASER DATA ··················· 93 

FIELD VALIDATION WITH GDOT’S PROFILER ····································· 94 

COMPARISON WITH PATHWAY DATA ·············································· 100 

PROCESSED RESULTS FOR INTERSTATE HIGHWAY ···························· 101 

SUMMARY ···················································································· 102 

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 104 

CONCLUSIONS ·············································································· 104 

RECOMMENDATIONS FOR IMPLEMENTATION ··································· 109 

REFERENCES 113 

 

  



 

 

v 

 

  



 

 

vi 

 

LIST OF TABLES 

Table 3-1. Detailed statistics of traffic signs MUTCD categories ······················· 18 

Table 3-2. Detailed statistics of traffic signs in poor conditions on each interstate 

highway. ···························································································· 20 

Table 3-3. Detailed statistics of overhead traffic signs on each interstate highway. 22 

Table 3-4. Detailed numbers of traffic signs in each working district. ················ 25 

Table 3-5. Detailed statistics of traffic signs in poor conditions in each working 

district. ····························································································· 26 

Table 3-6. Detailed statistics of overhead traffic signs in each working district. ···· 27 

Table 3-7. Comparison of the number of signs in different sign classification 

between 2015 and 2018 sign inventory. ······················································ 28 

Table 3-8. Comaprison of the number of signs in different poor condition categories 

between 2015 and 2018 sign inventory. ······················································ 29 

Table 4-1. Strength and weaknesses of assessment methods. ···························· 39 

Table 4-2. An example of sign retro-reflectivity condition classification using yellow 

prismatic sheeting signs with MR = 0.76. ··················································· 48 

Table 4-3. Number of signs tested with different colors and methods. ················ 52 



 

 

vii 

 

Table 4-4. Comaprison of nighttime visual assessment result and the retro-

reflectivity condition. ············································································ 53 

Table 5-1. Asphalt pavement distresses defined in COPACES. ························ 66 

Table 6-1. JPCPACES Survey Distresses. ··················································· 80 

Table 6-2. Comparison between GT-2018 JPCPACES rating and GDOT historical 

rating. ······························································································· 91 

Table 7-1. IRI from GDOT profiler and GTSV. ··········································· 99 

 

  



 

 

viii 

 

LIST OF FIGURES 

Figure 2-1.  Photo. Mobile imaging sub-system on GTSV. ································ 6 

Figure 2-2. Photo. Illustration of the collected sensing data using the mobile imaging 

sub-system. ·························································································· 7 

Figure 2-3. Photo. Components of 3D Line Laser System Integrated on the GTSV. · 8 

Figure 2-4. Photo. Collected data using the 3D line laser sub-system. ··················· 9 

Figure 2-5. Map. Spatial locations and extents of the interstates in Georgia. ········ 10 

Figure 3-1.  Photos. Examples of sign classification. ······································ 13 

Figure 3-2. Photos. Examples of four categories of poor sign conditions.············· 14 

Figure 3-3. Photo. Example of overhead sign failure (FHWA, 2013). ················· 15 

Figure 3-4. Photos. Examples of the overhead sign categories defined by GDOT. ·· 16 

Figure 3-5. Flowchart. Procedure to create an updated sign inventory using the 

previously collected data. ······································································· 17 

Figure 3-6. Chart. Distribution of traffic sign classifications on interstate highways 

in Georgia. ························································································· 18 

Figure 3-7. Chart. Traffic signs with poor conditions on interstate highways in 

Georgia. ···························································································· 19 



 

 

ix 

 

Figure 3-8. Map. Traffic signs with poor conditions on interstate highways in 

Georgia. ···························································································· 20 

Figure 3-9. Chart. Overhead traffic sings on interstate highways in Georgia. ······· 21 

Figure 3-10. Map. Overhead traffic sings on interstate highways in Georgia. ······· 22 

Figure 3-11. Chart. Distribution of the interstate traffic signs in the 7 working 

districts. ···························································································· 24 

Figure 3-12. Map. Distribution of the interstate traffic signs in the 7 working 

districts. ···························································································· 24 

Figure 3-13. Chart. Distribution of traffic signs in poor condition in the 7 working 

districts. ···························································································· 25 

Figure 3-14. Chart. Distribution of the overhead traffic signs in the 7 working 

districts. ···························································································· 27 

Figure 4-1. Photos. Variation of retro-reflectivity assessment results for a non-

uniform sign condition. ········································································· 38 

Figure 4-2. Illustrations. STOP sign retro-reflectivity condition assessment methods.

 ······································································································· 41 

Figure 4-3. Illustration. Locations for retro-reflectivity. ································· 45 

Figure 4-4. Graph. Correlation between retro-reflectivity and retro-intensity and 

determination of MR for green prismatic sheeting type signs. ·························· 46 



 

 

x 

 

Figure 4-5. Graph. Correlation between retro-reflectivity and retro-intensity and 

determination of MR for yellow prismatic sheeting type signs. ························· 46 

Figure 4-6. Graph. Correlation between retro-reflectivity and retro-intensity and 

determination of MR for white prismatic sheeting type signs. ·························· 47 

Figure 4-7. Photo. The experimental setup created in Georgia Tech campus parking 

lot for GDOT inspector to assess the collected signs. ····································· 50 

Figure 4-8. Photo. An example of poor (unacceptable) and good (acceptable) sign. 51 

Figure 4-9. Photo. Experimental setup for sign LIDAR data collection at Georgia 

Tech campus. ······················································································ 52 

Figure 4-10. Photos. Signs with uncertain retroreflectivity condition. ················ 54 

Figure 4-11. Map. Signs in good, uncertain, and poor retro-reflectivity condition on 

GA Interstate-285. ··············································································· 56 

Figure 4-12. Photos. Example of signs in poor condition. ································ 57 

Figure 4-13. Multiple Elements. Retro-intensity deterioration trends from 2015 to 

2018 for six selected signs on I-285. ··························································· 59 

Figure 4-14. Multiple Elements. Retro-intensity over four years for white sign. ···· 60 

Figure 5-1. Flowchart. Streamlined procedure for asphalt pavement data collection 

and processing. (Jiang & Tsai, 2016; Tsai, 2015; Tsai & Wang, 2014; Tsai & Li, 

2012). ······························································································· 68 



 

 

xi 

 

Figure 5-2. Map. Georgia’s interstate pavement surface type. ·························· 70 

Figure 5-3. Chart. Fifty-two 100-foot sections reported within a 1-mile segment. ·· 71 

Figure 5-4. Chart. Project COPACES rating histogram. ································ 72 

Figure 5-5. Map. Derived COPACES ratings using the proposed method. ·········· 73 

Figure 5-6. Maps. Major pavement distresses’ deduct values. ·························· 74 

Figure 5-7. Maps. Comparison between 2015 and 2018 Project Ratings. ············· 75 

Figure 5-8. Photos. Comparison of spot 1 northbound resurfacing between 2015 and 

2018. ································································································ 76 

Figure 5-9. Photos. Spot 2 northbound and southbound partial resurfacing. ······· 77 

Figure 5-10. Photos. Comparison of spot 3 northbound truck lane resurfacing 

between 2015 and 2018. ········································································· 77 

Figure 6-1. Flowchart. Streamlined procedure for JPCP 3D pavement data 

processing. ························································································· 83 

Figure 6-2. Map. Derived JPCPACES rating using 3D pavement data. ·············· 88 

Figure 6-3. Maps. Major JPCP distresses’ deduct values. ······························· 89 

Figure 6-4. Maps. Major JPCP distresses’ deduct values (continued). ················ 90 

Figure 7-1. Photo. GDOT Profiler. ··························································· 94 



 

 

xii 

 

Figure 7-2. Photos.Test sections for IRI validation. ······································· 95 

Figure 7-3. Graphs. IRI estimated using GTSV data. ···································· 97 

Figure 7-4. Graphs. Correlation between IRI estimated from different GTSV runs.

 ······································································································· 98 

Figure 7-5. Matrix. Rid quality classification by FHWA and NYSDOT. ············ 100 

Figure 7-6. Graph. IRI obtained from Pathway and GTSV. ··························· 100 

Figure 7-7. Chart. Georgia Interstates HRI distribution according to categories 

defined by FHWA. ·············································································· 101 

Figure 7-8. Map. HRI measurements of Georgia’s interstate routes. ················ 102 

 

  



 

 

xiii 

 

ACKNOWLEDGEMENTS 

The work described in this final report was supported by the Georgia Department of 

Transportation (GDOT) research project 17-32. We would like to thank the following 

personnel in GDOT: Ms. Meg Pirkle (Chief Engineer), Ms. Angela Alexander 

(Organizational Performance Management Director), Mr. David Jared (retired) and Mr. 

Binh Bui from the Office of Research; Ms. Ernay Robinson, Mr. Sam Wheeler, Mr. 

David Sparks, and Mr. Daniel Ferguson from the Office of Maintenance, for their strong 

support and heavy involvement.  We would also like to thank the members of the 

research team at the Georgia Institute of Technology (Georgia Tech), including Ms. 

Georgene Geary, Ms. Yi-Ching Wu, Mr. Anirban Chatterjee, Mr. Cibi Pranav, Mr. Ryan 

Salameh, Ms. Zhongyu Yang, Mr. Don Kushan Saminda Wijeratne, Mr. Yi Jiao, Ms. 

Mingshu Li and many other undergraduate research assistants for their diligent work. 

 

  



 

 

xiv 

 

  



 

 

xv 

 

EXECUTIVE SUMMARY 

Traffic signs are important for roadway safety and provide critical guidance to road users 

with traffic regulation, road hazard warnings, destination information, and other 

geographic information.  To better manage and maintain all traffic signs, each state 

department of transportation (DOT) must perform a comprehensive inventory, track the 

change of sign conditions, and assess sign retroreflectivity conditions.  The Georgia 

Department of Transportation (GDOT) has implemented a comprehensive sign inventory 

on Georgia’s interstate highways in 2016 through a research project (RP 15-11) 

performed by the Georgia Institute of Technology (Georgia Tech).  Mobile light 

detection and ranging (LiDAR) and video log images were employed for sign data 

collection, along with a semi-automatic sign inventory procedure.  Pavement surface 

distress data is critical for monitoring the statewide pavement conditions, identifying 

maintenance activities, and optimally allocating pavement funds.  To validate the use of 

3D pavement laser data for pavement distress data collection, the Office of Maintenance 

(OM) has worked with Georgia Tech to conduct a comprehensive Pavement Condition 

Evaluation System (PACES) data collection on interstate highways through the above 

research project.   

To track the existence and condition change of signs on interstate highways, this project 

conducted a sign and pavement condition data inventory again.  To utilize the previous 

sign inventory data, a new procedure was developed, which is much faster than the 

original process.  Sign retroreflectivity conditions are critical for nighttime driving safety.  
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In GDOT’s current practice, nighttime visual inspection is applied to assess sign 

retroreflectivity conditions; which is subjective, inaccurate, and time- consuming.  This 

project explored a sign retro-reflectivity condition assessment method using mobile 

LiDAR and validated the proposed method by using a case study.   

To track the changes in pavement surface distresses, the asphalt pavement condition 

evaluation on the interstate highway was conducted again.  Other than the PACES data, 

data on the conditions of jointed plain concrete pavements (JPCP) on interstate highways 

and the international roughness index (IRI) were also collected in this project using 3D 

laser data.    

The following observations summarize the major findings.  

Sign inventory and condition assessment: 

• 21,427 traffic signs were inventoried in 2018 along all the interstate highways using a 

procedure that makes use of previously collected data (2015 sign inventory). The 

guide signs make up 65% (13,969 signs) of the total sign population on the interstate. 

The rest of the population consists of 4,465 regulatory signs, 2,717 warning signs, 

and 276 other signs (temporary signs and signs with no identifiable MUTCD codes). 

• There are 1,256 signs (6% of the overall traffic sign population) in poor conditions 

(such as surface failure, post failure, obstructed by vegetation, and dirty) that require 

maintenance actions.  Surface failure of the signs make up the largest number of signs 

in poor condition in 2018; this is followed by signs that are dirty. The next two cases 

are signs that are obstructed, and signs whose posts failed. Further studies are needed 
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to determine the number of poor condition signs in 2015 that were not repaired until 

2018 and to determine the number of additional signs that dropped into poor 

condition 

• There are 4,135 overhead signs (19% of the overall traffic sign population). They 

have a high potential risk of failure and require frequent monitoring and condition 

assessment.  

• There is an increase of 1.87% in the number of signs in the 2018 Sign Inventory 

compared to the 2015 Sign Inventory. The largest increase in a number of signs falls 

under regulatory signs (4%, 188 signs). One of the noted reasons for change in this 

category comes from the “Prohibited. Holding Mobile Devices While Driving” signs. 

These signs were installed after 2015 when the state of Georgia passed the Hands-Free 

Georgia Law (HB673).  

Sign retro-reflectivity condition assessment: 

• A new method was developed to assess the sign retro-reflectivity condition category 

(good, poor, and uncertain) using the sign’s point cloud data collected by the mobile 

LIDAR technology. The two main steps involved in this method are 1) computing the 

retro intensity statistics (such as median and 25th percentile) for the sign point cloud 

data, and 2) classifying the sign retro-reflectivity condition category (good, poor, 

uncertain) based on the proposed minimum retro-intensity (MR) criteria.  

• The proposed method was validated using the nighttime visual inspection using signs 

collected from GDOT. The assessment was performed by a GDOT inspector who 
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classified the signs as “acceptable” or “unacceptable” based on the retro-reflectivity. 

All the signs that were failed by nighttime visual assessment method were correctly 

classified as “poor” by the proposed method; among the signs that passed, three signs 

were categorized as “uncertain” due to localized defects on the sign, such as dirt, 

cracking, or graffiti.  

• A case study was performed on I-285 to assess the feasibility of the proposed method 

by collecting LIDAR data on selected interstate traffic signs.  Among 338 selected 

signs, 67% of the signs were classified in a good retro-reflectivity condition, and 33 

percent of the signs were classified in a “poor” or “uncertain” retro-reflectivity 

condition. 

• A study was conducted to assess the retro-reflectivity deterioration behavior of a few 

selected signs using the retro-intensity data collected on them over the past 4 years. 

Promising trends for retro-intensity behavior change can be observed on a these signs. 

However, due to the unpredictable factors of dirt accumulation, rains, and cleaning of 

signs by the maintenance crews, the deterioration trends may not be consistent for all 

the signs in the field. Therefore, it is recommended that the retro-intensity 

deterioration analysis be performed under controlled conditions (clean the signs 

before retro-intensity measurement) to yield more consistent results. 

Asphalt Pavement Condition Assessment: 

• The COPACES ratings were computed for 1,289 miles of asphalt pavement by using 

the streamlined method for asphalt pavement condition evaluation. 
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• Overall, the pavement condition on interstate highways in Georgia is relatively 

acceptable, except for a few sections. The project ratings range from a low of 60 to a 

high of 99, with an average rating of 82 for all projects. There are 16 projects with a 

rating of 70 or below. 

• The overall deduct value related to load cracking and block cracking are relatively 

low, most of them being below 6 points, indicating that a low extent and low severity 

level is mostly identified along the surveyed pavements. Similarly, the rutting deduct 

values were mostly below 5 points, indicating average rutting of below ¼ inches. 

However, raveling is the major contributor to the project rating reduction with around 

75% of the projects having a raveling deduct value of 10% or above, which indicated 

more than 36% extent of Severity Level 1, or more than 15% at Severity Level 2. 

PCC (JPCP) Pavement Condition Assessment: 

• The JPCP ratings (JPCPACES) were computed for a total of 988 survey segments, 

and each segment represented 1 mile.  The overall JPCP condition on Georgia’s 

interstate highway is relatively acceptable with an average rating of 83.7 for all 

segments.  There are 178 segments with a rating below 70 that potentially need 

maintenance or replacement.  The poor performance JPCP pavements are located on 

I-75 north of Atlanta, I-20 west of Atlanta, I-20 east of Atlanta from MP130-MP150, 

I-16 near Macon, and I-16 from MP 80-MP 90. 

• The deduct value for the faulting index is highly correlated to the deduct value for the 

IRI, which indicates the faulting index highly impacts the roadway’s ride quality.  
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Moreover, it is found that the high deduct value for longitudinal cracks was mostly 

concentrated on I-20 west of Atlanta.   The high deduct value for shattered slabs was 

evenly distributed in all the segments with low JPCPACES ratings.   

Smoothness Evaluation: 

• The validation of the method for IRI measurement was conducted by comparison of 

IRI values obtained using the Georgia Tech Sensing Van (GTSV) and a GDOT 

Profiler on two GDOT test sections.  First, the repeatability test by the GTSV resulted 

in a high correlation between any two runs, with an average correlation of 0.7912 for 

the left wheel path and 0.7876 for the right wheel path.  Second, the difference of the 

average IRI collected by the GTSV and the GDOT Profiler is -0.58 in/mi for the left 

wheel path and 2.57 in/mi for the right wheel path, which shows high accuracy of IRI 

measurement using the GTSV. 

• The GTSV data from 2017 and 2018 were compared with the data collected by 

Pathway on I-85 northbound (MP 34-57). The average standard deviation between the 

IRI values estimated for each mile was 4.65 in/mi, with the highest standard deviation 

occurring at MP 41-42 of 9.51 in/mi. 

• The HRI was processed for all the interstate routes collected by the GTSV, including 

both asphalt and concrete pavements. Seventy-eight percent of the interstate fell into 

the “Very Good” and “Good” categories according to the FHWA definition with an 

HRI value of less than 76 in/mile, with few exceptions of higher HRI, mainly on I-16. 
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The following are implementation recommendations. 

Sign Inventory and Condition Assessment 

1) GDOT can take proactive action using the research outcomes from this project to 

locate and perform timely maintenance for the signs in poor condition in each  

district.  Based on the sign inventory outcomes, along with conditions, it is 

recommended that GDOT districts use the research outcomes (different categories 

of poor sign conditions and their locations) to actively perform maintenance and 

replacement to ensure roadway safety. If the  districts are limited by resources for 

maintenance, it is recommended they  perform the maintenance and replacement 

on the regulatory signs first.  

2) GDOT can also use the collected interstate highway sign inventory from this 

research project to assist the GDOT Office of Transportation Data (OTD) in 

performing QA/QC on the current statewide sign inventory effort. 

3) From the results of I-285 case study on selected signs, we can clearly see that 

GDOT can potentially reduce sign retro-reflectivity condition assessment effort 

by approximately 60% on I-285 by screening out the “good” retro-reflectivity 

signs.  GDOT inspectors may only need to assess the remaining 40% of signs in 

the “poor” and “uncertain” categories  to determine if they require replacement or 

cleaning. To validate the accuracy of the results, it is recommended that GDOT 

verify the research outcomes from the I-285 case study by assessing the selected 

signs in the field with its  inspectors and perform cleaning or replacement actions 

on the signs that were identified as “poor” or “uncertain.” 
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4) It is further recommended that GDOT implement the sign retro-reflectivity 

condition assessment as proposed in this research project at the network-level 

using the safe, cost-effective mobile-LiDAR data collected at highway speed after 

the field validation. 

Pavement Condition Assessment 

 

1) Knowing that GDOT has a new production operation with an outsourced, 

automated collection method using 3D sensing technology, it is recommended 

that  a quality assurance procedure be developed to ensure the data quality needed 

to support the MR&R decision-making.  Validating the accuracy and reliability of 

the GTSV in pavement condition evaluation shows a great potential for  use  by 

GDOT as a rigorous method to evaluate the data quality provided by the vendors 

as part of the data quality management plan.  

2) It is recommended that the high granularity of 3D pavement surface data be 

leveraged not only for evaluating the network condition, but also for maintenance 

and rehabilitation decisions at the project level. For example, 100-ft aggregated 

pavement distresses can be obtained and used for determining coring locations 

required by the Office of Materials and Testing for pavement design evaluation. 

Moreover, this data can also be used to define optimal termini for localized 

maintenance applications, such as deep patching of asphalt pavements, or be used 

to estimate the quantity of broken slab replacements for JPCP needed.  
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3) Because of having accurate pavement condition data, it is recommended this 3D 

and pavement distress data be used to better study pavement deterioration 

behavior and develop a reliable pavement performance forecasting model. For 

example, a raveling deterioration and forecasting study can be developed to 

improve GDOT’s predictive and preventive maintenance, such as  fog seal, 

micro-milling, and thin overlay optimal timing. Similarly, the slab-level pavement 

distresses of JPCP can be used to study the change of slab conditions and develop 

accurate forecasting models to support MR&R decisions, including broken slab 

replacement.  

4) After validating the IRI accuracy collected by the GTSV, it is recommended that  

GDOT use 3D pavement data, already collected for measurement of cracking, 

rutting, etc. to compute IRI to reduce the additional effort and cost required to 

compute IRI data using the laser profilers.  
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CHAPTER 1.  INTRODUCTION 

RESEARCH BACKGROUND AND RESEARCH NEED 

Traffic signs are important for roadway safety and provide critical guidance to road users 

with traffic regulation, road hazard warnings, destination information, and other 

geographic information.  To better manage and maintain all traffic signs, each state 

department of transportation (DOT) must perform a comprehensive inventory, track the 

change of sign conditions, and assess sign retroreflectivity conditions.  With enough sign 

condition data over time, a data-driven deterioration model can then be developed, which 

will help a state DOT allocate its budget for sign maintenance and replacement in a more 

cost-effective way.   The Georgia DOT (GDOT) implemented a comprehensive sign 

inventory on Georgia’s interstate highways in 2016 through a research project (RP 15-11) 

performed by the Georgia Institute of Technology (Georgia Tech) (Tsai et al., 2017).  

Mobile light detection and ranging (LiDAR) and video log images were employed for 

sign data collection and used along with a semi-automatic sign inventory procedure.  

There are total 22,344 traffic signs that were inventoried.  Among all the signs, 4% of the 

signs (i.e., 897 signs) were in poor conditions (surface failure, dirty, failed post, or 

obstructed) to different extents.  Using mobile LiDAR and videolog images for sign 

inventory has proved to be a safer, faster, and more cost-effective approach than the 

manual, visual inspection method, especially on high-traffic-volume interstate highways.     

Pavement surface distress data is critical for monitoring the statewide pavement 

conditions, identifying maintenance activities, and optimally allocating pavement funds.  
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To validate the use of 3D laser data for pavement distress data collection, the Office of 

Maintenance (OM) has worked with Georgia Tech to conduct a comprehensive Pavement 

Condition Evaluation System (PACES) data collection on interstate highways.  The 

County Pavement Condition System (COPACES) ratings and distresses were collected 

on 1,513 interstate highway pavement segments.  In addition, other than the 

representative pavement cracking data (in a 100-ft sample section), the full-coverage of 

distress data was acquired using the automatic distress data collection method and 3D 

laser technology.  The new pavement condition data is an excellent supplement to 

GDOT’s current COPACES survey, which is conducted by using a manual, visual 

inspection method.  For safety concerns, it is difficult, sometimes infeasible, to conduct a 

manual COPACES survey on a high-traffic-volume interstate highway.  Therefore, the 

automatic pavement distress data collection using 3D laser technology is used because it 

has proved to be a safer, more accurate, and more cost-effective method than the 

commonly used manual method, especially on interstate highways that have high 

volumes of traffic.   

To track the existence and condition change of signs and pavement surface distresses on 

interstate highways, there is a need to conduct sign and pavement condition data 

inventory again.  In the meantime, unlike a new inventory process, the second round of 

data collection should be faster and more accurate because the sign inventory has been 

previously done.  In the second round, the previous sign inventory data can be utilized to 

speed up the data collection in the second round and to control the second-round data 

quality.  Other than the PACES data, the conditions of jointed plain concrete pavement 

(JPCP) on interstate highways and the international roughness index (IRI) will also be 
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collected in this project using 3D laser data.  Based on the discussion with OM and the 

Office of Research (OR), all interstate highways in Georgia are selected, again, for this 

case study.  

Sign retroreflectivity conditions are critical for nighttime driving safety.  In GDOT’s 

current practice, nighttime visual inspection is applied to assess sign retroreflectivity 

conditions, but the process is subjective, inaccurate, and time consuming.  Through the 

national demonstration project, RP 12-10, entitled “A Remote Sensing and GIS-enabled 

Asset Management System (RS-GAMS)” that was sponsored by the USDOT and GDOT, 

the Georgia Tech research team proposed a systematic approach to assess sign 

retroreflectivity conditions using mobile LiDAR.  Compared to the nighttime visual 

inspection method, the proposed method is more objective, more accurate, and faster.  

Based on the discussion with OM and OR, the mobile-LiDAR-based sign retroreflectivity 

condition assessment will be tested in this research project.  Though exact reflectivity 

value is difficult to be acquired from LiDAR retro-intensity data, the proposed approach 

is capable of categorizing signs as “good,” “poor,” or “uncertain.”  The category of 

“uncertain” means a sign’s retroreflectivity condition is marginal and needs an engineer’s 

validation. 

RESEARCH OBJECTIVES 

The objective of this research project is to conduct the following sign inventory and 

pavement condition assessment on Georgia’s interstate highways: 1) to validate the 

change of sign inventory, 2) to evaluate sign retroreflectivity conditions using mobile 

LiDAR, 3) to assess asphalt pavement conditions, 4) to assess JPCP conditions, and 5) to 
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evaluate pavement smoothness.  A new automatic data collection procedure will be 

validated using previously collected sign data, including their conditions.  It is hoped that 

the new method will enhance the sign data collection efficiency and accuracy.  In 

addition, the proposed sign retroreflectivity condition assessment method using mobile 

LiDAR will be validated.  The sign inventory includes sign locations, sign types, the 

Manual on Uniform Traffic Control Devices (MUTCD) codes, and sign conditions based 

on the GDOT Foreman’s Manual.  A sign’s retroreflectivity condition will be categorized 

as “pass,” “fail,” or “uncertain.”  COPACES data includes 10 types of pavement 

distresses that are defined in the PACES manual.  In addition, JPCP condition and 

pavement IRI data will also be collected in this project.   

REPORT ORGANIZATION 

This report is organized as follows. CHAPTER 1 presents the background and objective 

of the study. CHAPTER 2 overviews the sensing data collection conducted in this study 

on the interstate highway system in Georgia. 0 presents a procedure to create an updated 

sign inventory using previous sign inventory data. 0 presents a sign retro-reflectivity 

condition assessment method using LiDAR technology. CHAPTER 5 presents the results 

for asphalt pavement condition assessment.  0 presents the results for JPCP condition 

assessment.  CHAPTER 7 presents the results for IRI evaluation.   CHAPTER 8 

summarizes the findings and discusses the recommendations for implementation.  

  



 

5 

CHAPTER 2. OVERVIEW OF THE SENSING DATA 

COLLECTION  

The Georgia Tech Sensing Vehicle (GTSV) was employed in the research project to 

collect the field roadway videolog images and 3D pavement data.  In the final report of a 

previous research project (RP 15-11), the sensing system was introduced.  However, to 

make this final report a self-contained one, this chapter reiterates the employed sensing 

system.  

GEORGIA TECH SENSING VEHICLE (GTSV) 

The GTSV, originally integrated into the national demonstration project performed by the 

Georgia Tech research team, is introduced in the data collection in this study. Two major 

subsystems were integrated into the GTSV, including the mobile imaging sub-system for 

traffic sign inventory and the 3D line laser sub-system for the pavement condition data 

collection.  

The mobile imaging sub-system used in this project consists of three primary 

components:  the LiDAR sensor, the precise positioning system, and the camera system. 

The LiDAR sensor is used to acquire the point cloud of the target, e.g. a traffic sign. Each 

point includes the accurate distance from the sensor to the target, the relative angle of the 

laser beam with respect to the LiDAR sensor, and the corresponding reflectance intensity. 

The precise positioning system is used to acquire accurate global positioning system 

(GPS) coordinates and poses for the LiDAR sensor. Thus, the GPS coordinates of each 

point from the LiDAR sensor can be derived. The positioning system is composed of a 
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GPS, an inertial measurement unit (IMU), and a distance measurement instrument (DMI) 

to acquire the precise GPS coordinates. The camera system is synchronized with the 

LiDAR sensor to provide corresponding color images. Figure 2-1 illustrates the mobile 

imaging sub-system on the GTSV.  

 

Figure 2-1.  Photo. Mobile imaging sub-system on GTSV. 

The current LiDAR sensor can produce 10,000 laser points per second. As the vehicle 

moves in the longitudinal direction, the scanning line of the LiDAR system is aligned 

perpendicularly to the ground. The scanning range is ±40° to the horizontal direction, 

which produces an 80° fan covering the roadside. For example, if a standard 48 in. × 60 

in. speed limit sign is mounted on the roadside with a lateral offset of 12 ft. to the edge of 

the road, the current configuration will be able to acquire a point cloud containing 

approximately 12×8 points at 60 mph (100 km/h). Based on the previous study, the 

frequency of the LiDAR system is configured at 100 Hz and 100 points within each scan, 

while the LiDAR heading angle is configured at 20°. Such a configuration was carefully 

recommended in the previous study for better acquiring the traffic sign data (Ai & Tsai, 

2015). The three video cameras (i.e., front right, front center, and front left camera) are 

synchronized and calibrated with the LiDAR sensor so that the corresponding 2-D images 
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can be integrated with the 3D LiDAR point cloud in the same location-referencing 

coordinates. The data collection interval of 5 meters is used for collecting the video log 

images; this was  recommended in the previous study for optimizing the data storage with 

sufficient overlap in the video log image sequence (Ai & Tsai, 2015). Figure 2-2 shows 

an illustration of the collected sensing data using the mobile imaging sub-system.  

 

Figure 2-2. Photo. Illustration of the collected sensing data using the mobile imaging 

sub-system. 

The 3D line laser consists of three primary components, including the imaging 

component, the distance-measuring component, and the data processing component. The 

imaging component is used to capture the pavement texture data using external infrared 

laser illumination and the spatial high-intensity camera. This component consists of two 

separate laser sensors to cover a full-lane width. Each laser sensor includes a dedicated 

infrared laser illumination and a high-intensity, area-scanning camera. The distance-

measuring component provides a data-capturing signal by using a DMI, which is user-

customizable. The data processing component computes the captured data into 3D range 
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results using a high-performance workstation. As shown in Figure 2-3Error! Reference 

source not found., the two laser sensors are installed on each side of the roof at the back 

of the GTSV. The current sensor delivers a resolution of 5 mm in the longitudinal 

direction and 1 mm in the transversal direction, with a resolution of 0.5 mm in the 

vertical direction. The field of view of the two sensors covers a full-lane width, i.e. 4 m. 

The research team configured both sensors at approximately 15 degrees clockwise to the 

transverse direction to avoid overlooking transverse cracks in the pavement. During data 

collection, each laser sensor uses a high-powered laser line projector with a customized 

filter to generate a fine infrared laser line illumining a strip of the pavement. The 

corresponding spatial high-intensity camera captures the deformed laser line on the 

pavement. From the captured image, range measurements are extracted (Tsai & Wang, 

2013). Error! Reference source not found. illustrates the collected data using the 3D line 

laser sub-system. 

 

Figure 2-3. Photo. Components of 3D Line Laser System Integrated on the GTSV. 
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Figure 2-4. Photo. Collected data using the 3D line laser sub-system. 

 

INTERSTATE HIGHWAY SYSTEM IN GEORGIA 

The interstate highway system in Georgia is comprised of seven primary interstate 

highways, including Interstate 75 (Route No: 0401), Interstate 20 (Route No: 0402), 

Interstate 85 (Route No: 0403), Interstate 16 (Route No: 0404), Interstate 95 (Route No: 

0405), Interstate 59 (Route No: 0406), and Interstate 24 (Route No: 0409), and eight 

auxiliary interstate, including Interstate 285 (Route No: 0407), Interstate 475 (Route No: 

0408), Interstate 185 (Route No: 0411), Interstate 675 (Route No: 0413), Interstate 520 

(Route No: 0415), Interstate 575 (Route No: 0417), Interstate 985 (Route No: 0419), and 

Interstate 516 (Route No: 0421). The total survey length of the interstate highway in 

Georgia covers 2,541.4 miles. Figure 2-5 shows the spatial locations and extents of these 

interstate highways.  
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Figure 2-5. Map. Spatial locations and extents of the interstates in Georgia. 
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CHAPTER 3. SIGN INVENTORY BASED ON 

PREVIOUSLY COLLECTED DATA  

This chapter presents a procedure to create an updated sign inventory for Georgia’s 

interstate highway in 2018 using the sign inventory previously created in 2015 (RP 15-

11).  The key steps involved in this procedure include 1) collecting and preparing the 

video log images and their GPS locations, 2) matching signs in the 2015 sign inventory to 

the 2018 video log to validate the existence of the signs and verifying their conditions 

(good, surface failure, post failure, or obstruction), and 3) performing QA/QC operation 

to capture the unmatched signs from the 2015 sign inventory and the newly installed 

signs after 2015.  Following the above procedure, this chapter discusses the results of the 

newly generated 2018 sign inventory, including the distribution of signs on each 

interstate highway and GDOT working district, grouped by the sign classification 

(regulatory, warning, guide and other signs), sign condition and sign overhead type 

(ground, sign bridge, bridge mounted, cantilever, and butterfly).  Finally, this chapter also 

compares the 2015 sign inventory and the 2018 sign inventory in terms of the number of 

signs in different classifications and conditions.   

KEY CHARACTERISTICS OF TRAFFIC SIGNS  

This section defines the main traffic sign characteristics that were collected and extracted 

using the GTSV, including the inventory and condition assessment. Inventory describes 

the sign locations and their attributes (e.g. classification of traffic signs), while condition 

assessment describes the performance adequacy of the inventoried signs, such as surface 
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failure, post failure, obstruction, or in good condition. The location, classification, and 

conditions of the signs are identified as the key characteristics that are required for the 

inventory.  

Sign Location: Traffic sign location is defined by GPS coordinates (i.e., longitude and 

latitude) that can uniquely define the spatial position. Extracting the location for each 

individual sign is the most important step for traffic sign inventory. In this study, 

WGS84, geodetic GPS coordinates are used to represent the traffic sign location, which 

can be flexibly converted to a linear referencing system that is used in GDOT.  

Sign Classification: Traffic sign classification is defined as the traffic sign classes that 

can distinguish different traffic sign functionalities, which has led to different designs, 

e.g. RX-X as regulatory signs, WX-X as warning signs, etc. (note: X is a number.). There 

are more than 670 types of traffic signs defined in the MUTCD, and they belong to three 

functional classifications (McGee, 2010): regulatory, warning, and guide. These 670 sign   

types are used in this project. Figure 3-1 shows an example of the different sign 

classifications used in this project.  
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                      A. Subfigure of regulatory sign              B. Subfigure of warning sign 

 

C. Subfigure of regulatory sign 

Figure 3-1.  Photos. Examples of sign classification. 

 

In addition, there could be some sign types that only occur within certain states or regions 

and are assigned with internal MUTCD codes. These signs will be classified and assigned 

to regulatory, warning, or guide classification based on their function. For example, the 

white sign “Prohibited. Holding Mobile Devices While Driving” is used in Georgia and 

will be classified as regulatory. All other signs that do not fall under any of these 

functional classifications, such as temporary work zone signs, information signs with no 

MUTCD code, etc., will be classified as “other” in this project.  
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Sign Condition: Traffic sign condition is represented by visual defects and the 

retroreflectivity. In this study, daytime inspection using video log images is the focus that 

identifies visual defects; studying the retroreflectivity condition, which is covered by 

nighttime inspection, is not presented in this chapter. Four categories of poor sign 

conditions are defined in this study, including post failure, dirty, obstruction, and surface 

failure. Figure 3-2Error! Reference source not found. shows several examples of signs 

in poor condition in each category.  

                                              

                      A. Subfigure of surface failure              B. Subfigure of post failure 

                                               

                      C. Subfigure of dirty sign                    D. Subfigure of obstructed sign 

Figure 3-2. Photos. Examples of four categories of poor sign conditions. 

 

Based on the Signs Chapter of GDOT’s Foreman's Academy (2008), the four categories 

of poor sign conditions correspond to four maintenance actions defined by the Highway 

Maintenance Management System (HMMS) (Hensing & Rowshan, 2005), including 

straightening, cleaning, vegetation trimming, and replacing. 
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Overhead Sign: Besides the above-mentioned three traffic sign characteristics, overhead 

signs are specially considered and separated from ground-mounted traffic signs. 

Although overhead signs only contribute a small portion of the entire sign population, the 

damage of these signs and/or their corresponding support, e.g. panel failure, support 

structure failure, etc., may potentially lead to serious hazards to road users. Figure 3-3 

shows an example of such hazardous situations.  

  

Figure 3-3. Photo. Example of overhead sign failure (FHWA, 2013). 

 

Therefore, overhead signs are specially categorized and inventoried in detail. According 

to the different supporting structures for overhead signs defined in the Signs Chapter of 

GDOT’s Foreman's Academy (2008), four categories are inventoried, including Sign-

Bridge-Mounted, Cantilever-Mounted, and Bridge-Mounted and Butterfly-Mounted 

traffic signs. Figure 3-4 illustrates these four categories. Inventorying the detailed 

categories of overhead signs and identifying the spatial locations of these signs will be 

beneficial to the subsequent maintenance and/or the more detailed structural inspection.  
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           A. Subfigure of sign-bridge-mounted               B. Subfigure of cantilever-mounted 

                                                      

                  C. Subfigure of bridge-mounted                  D. Subfigure of butterfly-mounted 

Figure 3-4. Photos. Examples of the overhead sign categories defined by GDOT. 

 

PROCEDURE TO CREATE UPDATED SIGN INVENTORY USING 

PREVIOUSLY COLLECTED DATA 

This section discusses the procedure adopted to create an updated sign inventory for 

Georgia’s interstate highways based on the previously created sign inventory in 2015. 

The three key steps involved in this procedure include 1) collecting and preparing the 

interstate video log images and their GPS locations, 2) matching signs in the 2015 sign 

inventory to the 2018 video log to validate its existence and assessing the sign condition 

(good, surface failure, post failure, or obstruction), and 3) performing QA/QC operation 

to capture the unmatched signs from the 2015 sign inventory and to capture the newly 

installed signs since 2015. Figure 3-5 shows the flowchart of the proposed procedure, 

which consists of the 3 key steps.  
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Figure 3-5. Flowchart. Procedure to create an updated sign inventory using the 

previously collected data. 

 

RESULTS 

In this study, 21,427 traffic signs are inventoried through the proposed approach. Among 

all the identified signs, the majority of the signs are guide signs that make up 65% of the 

total population (13,969 signs). The rest of the population consists of 4,465 regulatory 

signs, 2,717 warning signs, and 276 other signs (temporary signs and signs without 

identifiable MUTCD codes).  Figure 3-6 shows the distribution and the percentage of the 

traffic signs on the interstate highways in Georgia based on their classifications. Error! 
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Reference source not found.Table 3-1 lists the number of signs in each category on 

each interstate highway. 

 

4465
21%

2717
13%

13969
65%

276
1%

Traffic Sign Classifications on 
Interstate Highways in Georgia

Regulatory Signs Warning Signs Guide Signs Other Signs

Figure 3-6. Chart. Distribution of traffic sign classifications on interstate highways 

in Georgia. 

Table 3-1. Detailed statistics of traffic signs MUTCD categories 

 

 

Interstate 
Guide 

Signs 

Regulatory 

Signs 

Warning 

Signs 
Other Signs Total 

I-16 1,423 381 230 22 2,056 

I-185 446 88 76 2 612 

I-20 2,289 720 294 44 3,347 

I-24 50 20 20 0 90 

I-285 1,478 364 214 23 2,079 

I-475 130 42 20 0 192 

I-516 126 54 80 0 260 

I-520 176 55 81 3 315 

I-575 411 104 142 15 672 

I-59 129 61 35 1 226 

I-675 76 31 21 0 128 

I-75 4,026 1,561 942 75 6,604 

I-85 2,016 619 264 64 2,963 

I-95 870 292 254 21 1,437 
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I-985 323 73 44 6 446 

 

Among all the identified signs, 6% of the signs (i.e. 1,256 signs) are in different 

categories of poor condition as defined in the GDOT’s Foreman’s Academy (2008). 

Among all the signs in different poor condition categories, surface failure (478 signs, 

38.1%) and dirty signs (302 signs, 24.0%) are the two primary categories of poor 

conditions. The rest of the signs are in poor condition due to having a failed post (199 

signs, 15.8%) and being obstructed (277 signs, 22.1%). Overall, the number of traffic 

signs in poor condition is only a small portion of the total number of traffic signs, 

indicating overall, well-maintained sign condition by GDOT. Figure 3-7 and Figure 3-8 

show the distribution of the traffic signs in poor condition on the interstates. Table 3-2 

shows the detailed statistics for each interstate highway in Georgia that are in poor 

condition. 

 

Figure 3-7. Chart. Traffic signs with poor conditions on interstate highways in 

Georgia. 
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Georgia

Obstructed Post Failure Surface Failure Dirty
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Figure 3-8. Map. Traffic signs with poor conditions on interstate highways in 

Georgia. 

Table 3-2. Detailed statistics of traffic signs in poor conditions on each interstate 

highway. 

 

Interstate  Obstructed 
Post 

Failure 

Surface 

Failure 
Dirty Total 

I-16 18 22 41 20 101 

I-185 7 3 22 11 43 

I-20 45 35 72 34 186 

I-24 1 3 2 8 14 

I-285 59 19 56 22 156 

I-475 2 1 5 5 13 

I-516 0 0 5 0 5 

I-520 0 2 9 0 11 

I-575 4 5 23 18 50 

I-59 0 3 8 9 20 

I-675 1 1 2 7 11 

I-75 80 78 136 101 395 

I-85 51 15 44 21 131 

I-95 9 2 29 11 51 

I-985 0 10 24 35 69 



 

21 

 

Among all the inventoried signs, 19.3% of the signs (i.e. 4,135 signs) are installed on 

overhead structures (sign-bridge, cantilever, bridge and butterfly signs). About 42% of 

the overhead signs (i.e., 1,733 signs) are installed on sign-bridges, while 35.2% of the 

overhead signs are installed on bridges or other permanent overhead structures (i.e., 1,457 

signs). The rest of the overhead signs are installed either on cantilever structures (10.1%, 

417 signs) or butterfly structures (12.8%, 528 signs). Figure 3-9 and Figure 3-10 show 

the distribution of the overhead signs on the interstate highways in Georgia based on their 

base supporting structures.  

 

1733, 
42%

417, 
10%

528, 
13%

1457, 
35%

Overhead Traffic Signs on 
Interstate Highways in 

Georgia

Sign Bridge Mounted Cantilever Mounted

Butterfly Mounted Bridge Mounted

Figure 3-9. Chart. Overhead traffic sings on interstate highways in Georgia. 
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Figure 3-10. Map. Overhead traffic sings on interstate highways in Georgia. 

Traffic signs installed on overhead structure on interstate highways in Georgia.  Table 

3-3 shows the detailed statistics for each interstate highway in Georgia.  

Table 3-3. Detailed statistics of overhead traffic signs on each interstate highway. 

 

Interstate 
Sign Bridge 

Mounted 

Cantilever 

Mounted 

Butterfly 

Mounted 

Bridge 

Mounted 

I-16 19 0 1 81 

I-185 35 6 12 45 

I-20 254 89 70 301 

I-24 11 0 0 2 

I-285 274 31 45 187 

I-475 15 0 14 12 

I-516 10 0 0 1 

I-520 34 4 3 14 

I-575 25 2 2 38 
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I-59 4 0 0 9 

I-675 11 3 1 14 

I-75 575 167 266 485 

I-85 371 75 51 183 

I-95 82 39 43 67 

I-985 13 1 20 18 

Total 1733 417 528 1457 

 

Among all the working districts, District 7 has most of the traffic signs, approximately 

28% (i.e., 5,989 signs) of the total interstate traffic signs, because the district covers the 

majority of the urban interstate highways. District 4 covers the least number of the traffic 

signs, approximately 7.5% (i.e., 1,606 signs) of the total interstate traffic signs because of 

short mileage the interstate covers in this district. Figure 3-11 and Figure 3-12 show the 

distribution of the interstate miles in the seven districts and the corresponding numbers of 

traffic signs within each district. 

Table 3-4 shows the detailed numbers and percentage of traffic signs in each working 

district.   
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Figure 3-11. Chart. Distribution of the interstate traffic signs in the 7 working 

districts. 

 

 

Figure 3-12. Map. Distribution of the interstate traffic signs in the 7 working 

districts. 
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Table 3-4. Detailed numbers of traffic signs in each working district. 

 

District 1 2 3 4 5 6 7 Total 

Number of Signs 1954 2599 3712 1606 2581 2986 5989 21427 

Percentage 9.1% 12.1% 17.3% 7.5% 12.0% 13.9% 28.0% 100.0% 

The distribution of the traffic signs in poor condition in the seven working districts is 

shown in Figure 3-13.  It can be observed that District 7 has more traffic signs in poor 

conditions (i.e., 462 signs, approximately 8% of the total signs in District 7) than the ones 

in other districts. While surface failure is the major reason in all working districts for 

traffic signs in poor condition, it should be noticed that traffic signs with dirty surfaces 

occur more frequently in District 6, and obstruction and post failure occur more 

frequently in District 7. These observations may provide some insight into guiding an 

improved maintenance effort, such as traffic sign cleaning in District 6, and repair the 

sign posts and vegetation trimming in District 7.  

 

Figure 3-13. Chart. Distribution of traffic signs in poor condition in the 7 working 

districts. 
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Table 3-5 shows the detailed statistics including the count of different types of poor 

condition signs and the percentage of poor condition signs in each district. 

Table 3-5. Detailed statistics of traffic signs in poor conditions in each working 

district. 

 

District Obstructed Post Failure 
Surface 

Failure 
Dirty Total 

Percent 

Poor 

Condition 

1 31 17 43 42 133 7% 

2 3 14 52 8 77 3% 

3 48 35 73 33 189 5% 

4 2 1 21 5 29 2% 

5 17 13 51 24 105 4% 

6 38 43 74 106 261 9% 

7 138 76 164 84 462 8% 

Figure 3-14 shows the distribution of the overhead traffic signs in the 7 working districts. 

It can be observed that District 7 has a significantly larger number of overhead traffic 

signs (i.e., 1,954 signs, around 33% of the total signs in District 7) than other districts 

because of the frequent overpasses and intersections in the urban region. The large 

number and percentage of overhead signs in District 7 may require more maintenance 

efforts and activities than in other districts. Table 3-6 shows the detailed statistics of the 

overhead traffic sign distribution and the percentage of overhead signs in each district. 
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Figure 3-14. Chart. Distribution of the overhead traffic signs in the 7 working 

districts. 

Table 3-6. Detailed statistics of overhead traffic signs in each working district. 

 

District 

Sign 

Bridge 

Mounted 

Cantilever 

Mounted 

Butterfly 

Mounted 

Bridge 

Mounted 
Total 

Percent 

Overhead 

Signs 

1 190 20 50 65 325 17% 

2 84 9 18 137 248 10% 

3 172 108 87 276 643 17% 

4 99 37 98 104 338 21% 

5 106 39 44 104 293 11% 

6 128 4 88 114 334 11% 

7 954 200 143 657 1954 33% 

COMPARISON OF 2015 AND 2017 SIGN INVENTORY 

This section presents the statewide comparison of the changes in the number of signs in 

different sign classification and sign condition between the 2015 and 2018 sign 

inventories. For the sign classification comparison, only the regulatory, warning, and 

guide signs are compared.   
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First, the comparison is between the number of signs in different sign classifications. A 

total of 21,151 signs were inventoried in 2018 that belonged to the regulatory, warning, 

and guide classification, compared to 20,763 signs that were found in the respective 

classes of the 2015 sign inventory. Overall, it is an increase of 1.87%, a small number 

compared to the total number of signs. Table 3-7 shows the comparison of the number of 

signs in each class between the 2015 and 2018 sign inventories. Most sign changes were 

in the “regulatory” sign category, which accounted for a 4.4% increase in the number of 

signs in 2018. For example, in the recent times, Georgia made it illegal to hold mobile 

devices while driving, and a new regulatory sign was introduced in Georgia after 2015. 

This example justifies the increase in the number of regulatory signs in 2018. There is 

also a small increase (1.5%) in the number of guide class signs. One reasoning to this 

increase is that the signs along I-516 in the northbound direction were not included in the 

2015 sign inventory. In addition, there is a small percentage decrease in the number of 

signs in warning sign class, which are 0.55 percent. Some of the reduction can be part of 

sign removal for the construction work such as the construction of new interchange near 

Macon.  

Table 3-7. Comparison of the number of signs in different sign classification 

between 2015 and 2018 sign inventory. 

Sign classification 2015 2018 Percent change 

Regulatory Signs 4,277 4,465 4.4% 

Warning Signs 2,732 2,717 -0.55% 

Guide Signs 13,754 13,969 1.5% 
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Among the signs inventoried in 2018, 1,256 signs are in poor condition but only 897 

signs were in poor condition in 2015. Table 3-8 shows the comparison of different 

categories of poor condition signs between 2018 and 2015. There is a 40% increase in the 

number of signs in all categories of poor condition in 2018 compared to 2015. There are 

more obstructed signs (129%, the highest increase); the number of signs in the dirty 

category has the lowest increase (over 15%). There is a 23% increase in the signs with 

surface failure and a 62% increase in the signs with post failures. In the 3 years between 

the inventories, it is possible some of the poor condition signs were not repaired and 

additional signs dropped into poor condition. It must be noted that the individual signs 

were not tracked for the condition change and the results are only an aggregated count 

from the entire state. Therefore, detailed studies are required to confirm the actual reason 

for the increase of signs in poor condition.  

Table 3-8. Comaprison of the number of signs in different poor condition categories 

between 2015 and 2018 sign inventory.  

 2015 2018 Percent change 

Obstructed 121 277 129% 

Post Failure 123 199 62% 

Surface Failure 390 478 23% 

Dirty 263 302 15% 

Total 897 1256 40% 
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SUMMARY 

The following is a summary of the sign inventory in this project:  

• 21,427 traffic signs were inventoried in 2018 along all the interstate highways in 

Georgia using a procedure that makes use of previously collected data (2015 sign 

inventory). The guide signs make up 65% (13,969 signs) of the total sign 

population on the interstate. The rest of the population consists of 4,465 

regulatory signs, 2717 warning signs, and 276 other signs (temporary signs and 

signs with no identifiable MUTCD code). 

• There are 1,256 signs (6% of the overall traffic sign population) in poor condition 

that require sign maintenance, including the following: 

1) Surface failure (478 signs, 38 %) 

2) Dirty (302 signs, 24%) 

3) Post failure (199 signs, 16%) 

4) Obstructed (277 signs, 22%) 

• There are 4,135 overhead signs (19% of the overall traffic sign population). They 

have a high potential risk and require frequent monitoring and condition 

assessment. They are divided into four categories and inventoried with their 

locations (latitude and longitude coordinates).  

1) sign-bridge (1,733 signs, 42%) 

2) bridge-mounted (1,457 signs, 35%) 

3) cantilever (417 signs 10%) 

4) butterfly (528 signs, 13%) 
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• There is an increase of 1.87% in the number of signs in the 2018 Sign Inventory 

compared to the 2015 Sign Inventory. For example, regulatory signs such as the 

“Prohibited. Holding Mobile Devices While Driving” signs were installed after 

2015 when the state of Georgia passed the Hands Free Georgia Law (HB673) 

contributed to this increase.    

• There is a 40% increase in the number of signs in poor condition in the 2018 Sign 

Inventory compared to the 2015 Sign Inventory. Further studies are needed to 

determine the number of poor condition signs in 2015 that were not repaired until 

2018 and to determine the number of additional signs that dropped into poor 

condition.   
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CHAPTER 4. SIGN RETRO-REFLECTIVITY 

CONDITION ASSESSMENT USING MOBILE LIDAR  

This chapter presents a sign retro-reflectivity condition assessment method using LiDAR 

technology, validates the proposed method, and uses a case study to demonstrate the use 

of the proposed method.  The proposed method aims to cost-effectively classify the sign 

retro-reflectivity condition at network-level based on good, poor, and uncertain 

categories. After the sign retro-reflectivity condition is determined by the proposed 

method at the network-level, GDOT inspectors may only need to screen and assess the 

signs that are in poor and uncertain categories to recommend suitable actions (e.g. replace 

sign, wash, etc.).  Therefore, the proposed method not only complements GDOT’s 

existing sign retro-reflectivity condition assessment methods (e.g. time-consuming 

nighttime visual inspection and retroreflectometer measurement methods), it will 

enormously cut down GDOT’s sign inspection efforts at the network-level by focusing on 

signs that need the most attention (poor or uncertain category signs).  This chapter also 

presents the retro-reflectivity change analysis for four years of selected signs to track 

their retroreflectivity deterioration behavior. Promising trends can be observed in terms 

of retroreflectivity deterioration behavior by analyzing the retro-intensity change on the 

signs. However, dirt accumulation on the signs over time can affect the retroreflectivity 

measurement and, in turn, affect the conclusions we can draw about the deterioration 

status. So, it is recommended to clean the sign first before condition assessment so as to 

have a consistent measurement for deterioration analysis.  
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INTRODUCTION 

Although only 20% of driving occurs after dark, there are three times more deaths at 

night than during the day (Brody 2007). Drivers at night rely on the visibility of traffic 

control devices (TCD), such as traffic signs and pavement markings, for navigation and 

maintaining their driving lanes. However, if the crucial navigation information from the 

TCDs cannot be seen by the drivers due to poor visibility at nighttime, it creates 

dangerous situations that often lead to crashes. Hence, for adequate visibility of the TCDs 

at night, ensuring the retro-reflectivity condition of signs and pavement markings above 

the minimum retro-reflectivity requirement is a priority for state departments of 

transportation. There are two current methods being used to assess individual traffic 

signs’ condition to ensure their retro-reflectivity conditions are above the minimum 

MUTCD requirement (FHWA, 2012): the nighttime visual inspection, the retro-

reflectometer measurement (Carson & Lupes, 2007). The nighttime visual inspection 

suffers from subjective assessment of the inspectors and lacks any objective standards, 

while the retro-reflectometer method is time-consuming, dangerous, and only samples 4 

points, despite having the advantage of being able to provide objective, numerical data.  

Alternatively, transportation agencies may adopt blanket replacement methods to avoid 

individual sign retro-reflectivity condition assessment. However, this method may not 

result in economical use of resources because the signs in good condition are also 

replaced with this method. The three methods are described in detail in the following 

section.  
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CURRENT PRACTICES TO MEET THE MINIMUM RETRO-

REFLECTIVITY REQUIREMENT FOR THE TRAFFIC SIGNS 

This section discusses the two principle methods for traffic sign retro-reflectivity 

condition assessment and is followed by a discussion on the blanket replacement method.  

Method 1: Nighttime visual inspection method 

According to FHWA guidelines (FHWA, 2007), visual night-time inspection is an 

assessment method in which two trained inspectors travel in a truck or SUV at a normal 

driving speed using low-beam headlights. The passenger-inspector gives an evaluation 

(“acceptable” or “unacceptable”) to each sign being surveyed.  The greatest disadvantage 

with this method is its subjectivity. The process depends entirely on human judgement, 

which cannot be quantified and may vary from person to person.  

To counter that, state agencies standardize the assessment procedure by including a 

“calibration” phase before the inspection during which several traffic signs known to be 

in a passing/failing condition are used as references to train the inspectors (FHWA, 2007; 

MnDOT, 2014). However, even such standardization may not account for variability in 

assessment under different environmental conditions (like surrounding light, fog, etc.) 

that may be faced during actual field assessment. An additional issue with the visual 

inspection procedure is that it   is only useful if done at night. 

In GDOT sign condition assessment practices, GDOT does not have a separate sign 

retroreflectivity condition assessment procedure. Their retro-reflectivity condition 

assessment is tied up with overall sign condition assessment, which includes evaluation 
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of fading, cracking, adhesion failure, post failure, bolt failure, and post galvanization 

(GDOT, 2012). The Georgia Tech research team interviewed a GDOT inspector from 

District 7 to document the standard operating procedure for GDOT inspectors to assess 

traffic signs. GDOT typically assesses the retro-reflectivity conditions of the signs in 

their area once every year. To perform the assessment, GDOT sign inspectors typically 

drive their trucks to a distance of 300-450 feet in front of the sign to start with the retro-

reflectivity condition assessment. The inspector turns ON the flashing amber light and the 

headlights of his truck to check if he can clearly see flashes reflected from the traffic 

sign. This is done to check the reflectivity of the background color of the sign. Once it is 

done, flashing lights are turned OFF, and with the help of just the truck’s headlights, the 

inspector verifies whether the legend on the sign is visible or not. If both the above 

conditions are satisfied, the sign passes the retro-reflectivity test. Following the retro-

reflectivity assessment, the inspector also looks at other failures (cracking, post failure, 

etc.)  to determine the overall condition of the sign. 

There are four main limitations of GDOT’s sign retro reflectivity condition assessment: 

1) it is time-consuming to stop and assess every sign; 2) there are thousands of signs in 

the network, so it takes many months to complete the assessment; 3) inspectors can 

conduct the inspection only at nighttime, so they have only limited time to conduct their 

assessment; and 4) the subjectivity involved in retroreflectivity assessment (how much 

reflectivity is good) means that different inspectors from different districts may have 

different assessments of the signs; therefore,  assessment results may not be uniform 

across the state.  
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Method 2: Retroreflectometer method 

The second method uses a retroreflectometer, which is a handheld device that is held 

directly against the surface of a sign at 4 different points on each color of the sign to 

measure the retroreflectivity value (ASTM, 2016).  A numerical retroreflectivity value is 

given that can then be compared to the minimum levels outlined in the MUTCD (2009) 

to classify the sign as passing or failing. The method is quantitative and consistent, 

thereby overcoming the subjectivity of the visual assessment method. However, the 

primary issue with this method is that it is very slow, tedious (labor-intensive) and 

dangerous to workers making the measurement in the field. Inspectors must leave their 

vehicle for every measurement, which is time-consuming (approximately 5 minutes for 

each sign) and dangerous (while traffic is still flowing). Another concern is that this 4-

sampling method does not work well when the sign condition is non-uniform. For 

example, Figure 4-1 (a) and Figure 4-1  (b) show two sets of 4-point readings, measured 

on the same sign (a STOP sign with dirt on right side and scratches on left top corner). 

Figure 4-1 (a) shows the sampling location at which the sign is assessed as “Pass” and  

Figure 4-1 (b) shows a sampling location at which the sign is assessed as “Fail” simply 

because four different points are selected.  Thus, for signs with a non-uniform condition, 

the results of this assessment may fail to account for localized damage and deterioration.  
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             A. Subfigure of pass sample             B. Subfigure of fail sample 

Figure 4-1. Photos. Variation of retro-reflectivity assessment results for a non-

uniform sign condition. 

 

Method 3: Blanket replacement method 

Blanket replacement is a method of TCD asset management to ensure the retro-

reflectivity conditions of the signs are above the minimum MUTCD requirement. This 

method considers both the expected life of the sign and its location for a replacement 

decision. More specifically, a group of signs in a single area or corridor is set to be 

replaced all at once under the assumption that all signs in the group would have reached 

their expected life spans. This method is currently used by many state DOTs. Typically 

expected sign lives that are used for setting the replacement schedule are 7-10 years for 

engineering grade signs, 10-15 years for high-intensity prismatic signs, and 15 years for 

Type VI or higher prismatic signs (FHWA, 2007). These timeframes may also be 

adjusted based on climate and previous experience in the region. In addition, blanket 

replacements of signs may also be scheduled along a corridor during road construction 

work, regardless of their service life. 
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This method eliminates the need for field assessment, decreases the number of trips made 

to replace signs, and reduces the amount of documentation required, since the only 

necessary information is the last date of replacement for a sign group. The major 

disadvantage of the blanket replacement method is that signs in good condition may be 

prematurely replaced, even though they may still have several months or years of service 

remaining, which is an uneconomical use of agency resources. This risk becomes more 

likely in cases in which individual signs are prematurely replaced (due to theft, post 

failure, or vandalism) between replacement cycles. Then, it is possible for a new sign to 

be taken down and replaced. 

Table 4-1 compares the characteristics of the existing methods in terms of strengths and 

limitations, including assessment quality, speed, safety, and assessment time.    

Table 4-1. Strength and weaknesses of assessment methods. 

Method Assessment quality Speed Safety 
Assessment 

time 

Visual Inspection 

X 

Subjective; not 

quantifiable 

X 

Time-consuming; 

must individually 

assess each sign 

✓ 

No need for 

humans to enter 

roadway, can 

assess from inside 

the vehicle 

X 

Must be done at 

night 

Retroreflectometer 

X 

Few points; may 

miss localized 

damage 

X 

Time-consuming 

and laborious; 

must measure 

each sign by hand 

X 

Human must enter 

right-of-way to 

conduct 

assessment 

✓ 

Any time of 

day is viable 

Blanket 

Replacement 

X 

May remove signs 

that still have 

remaining life 

✓ 

No time spent on 

assessment 

✓ 

No field 

assessment 

(N/A) 
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There is an urgent need to develop an alternative method for assessment and replacement 

of traffic signs to meet the minimum retroreflectivity requirement that is objective, rapid, 

cost-effective, safe, and not constrained by limited assessment time.  

A COST-EFFECTIVE MEANS TO ASSESS SIGN RETRO-

RETROFLECTIVITY CONDITION 

The current sign condition assessment methods, including nighttime visual inspection and 

retroreflectometer measurement, are labor-intensive, time-consuming, dangerous to 

workers, subjective because of human assessment or having only four subjective 

sampling points, limited in terms of productivity, and constrained by time (only at night). 

Since it is very slow to have inspectors drive and evaluate all the roadways with the 

nighttime visual inspection method or retroreflectometer method, the inspections are 

typically only done once per year, so damaged signs may stay up for quite a long time 

without being replaced. The blanket replacement method is simple; however, it is not an 

economical method because some signs may still be in a good condition and do not need 

to be replaced.   

The LIDAR technology could be a very effective method that saves a significant amount 

of time and resources for the traffic sign assessment. While LIDAR technology can be 

used to extract roadway assets, including signs (Tsai & Ai, 2014) and pavement marking 

(Haiyan et al., 2015), sidewalk measurement (Tsai & Ai, 2016), super-elevation 

measurement (Tsai & Ai, 2013), sight distance assessment (Ma et al., 2019) at highway 

speed (100km/hr), it would be beneficial to use the already-collected LIDAR cloud data, 

which can also be used to assess sign retro-reflectivity (Ai & Tsai, 2016).  
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The LIDAR data can be collected during any time (day or night) and does not require 

workers to physically stop and get into and out of a vehicle to perform data collection. 

LIDAR can capture more than 4 sampling points (e.g. 20 – more than 100 depending on 

type of LIDAR systems), much more effective than a reflectometer’s 4 points, as 

illustrated in Figure 4-2 (b) and  Figure 4-2(c). LIDAR data provide a complete 

representation of the sign (Figure 4-2 (c) that is close to the human eye’s ability to  

visually and accurately perceive reflectivity  (as shown in  Figure 4-2 (a)); this is much 

better than  the using just the four data points of a  retroreflectometer measurement of  

each color (as shown in  Figure 4-2 (b)). Hence, LIDAR technology can provide more 

objective and reliable assessment of a sign’s retroreflectivity than can the 

retroreflectometer method.    

                                                                 

 A. Subfigure of nighttime visual inspection      B. Subfigure of retroreflectometer method 

 

C. Subfigure of LIDAR method 

Figure 4-2. Illustrations. STOP sign retro-reflectivity condition assessment methods. 
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LIDAR technology provides an innovative opportunity to perform cost-effective and safe 

assessment of the sign retro-reflectivity condition. However, there is still a need to 

develop and validate a method using LIDAR technology to assess the sign retro-

reflectivity condition at the network level and when driving at highway speed.  The 

following section presents the development of the proposed method. 

DEVELOPMENT OF SIGN RETRO-REFLECTIVITY CONDITION 

ASSESSMENT USING MOBILE LIDAR 

The idea in this section is to use the objectiveness of the retroreflectivity assessment and 

the comprehensiveness (assessing the sign completely, not using just 4 points) of the 

visual assessment to develop a method to classify sign retroreflectivity condition into 

three categories using the mobile LIDAR. The categories include “good,” “poor,” and 

“uncertain” retroreflectivity condition ratings. The good category signs do not require 

further inspection. The poor category signs definitely require replacement. The uncertain 

category signs require GDOT inspectors to further assess the sign to determine if it is 

good or poor. Both the uncertain and poor category signs require further investigation. 

The value of this project is that it can determine which signs are good signs so that 

GDOT can efficiently disperse its inspectors only to the poor and uncertain category 

signs, thus saving great amounts of money and resources that would otherwise be spent 

on inspecting the good category signs.  

LIDAR mounted on a mobile vehicle can collect thousands of 3D data points from the 

roadway environment at roadway driving speed (100 km/hr). The data collected by the 

LIDAR system consists of a three-dimensional point cloud with each point defined by 
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three-dimensional coordinates (X, Y, and Z) and a retro intensity value. A retro-intensity 

value measures the ratio of the energy redirected from the object in the roadway 

environment to the energy emitted from the LIDAR sensor, similar to the measurement 

obtained when using a retroreflectometer (Ai, 2013). Hence, the retro-intensity values 

and the traffic sign retro-reflectivity conditions can be correlated. Such a correlation can 

be used to conduct a traffic sign retroreflectivity condition assessment. This section 

discusses the development of a novel sign retroreflectivity condition assessment method 

using the data collected by mobile LIDAR. This section does not discuss the data 

collection and data processing steps that includes (1) sensor calibration, (2) data 

acquisition, (3) LIDAR point coordinate computation, and (4) screening of the point 

cloud that is associated with traffic signs. These steps are described in the paper authored 

by Ai and Tsai (2014). After the 3D point cloud data for the traffic signs are screened, a 

sign retroreflectivity condition assessment includes three steps: 1) compute the retro- 

intensity statistics (such as median, 25th percentile) for the screened sign;  2) determine 

the suitable sign retro-intensity criteria to classify the sign retroreflectivity condition 

category (good, poor, uncertain) using the statistics; 3) map the signs with their retro-

reflectivity condition categories (good, poor, and uncertain) on the road network. These 

three steps are described in detail below. 

Compute the retro-intensity statistics for the screened signs 

The screened data consists of the location information and the retro-intensity value of the 

3D points belonging to the sign. The distribution of the retro-intensity of the points can 

potentially reveal useful information of the retro-reflectivity condition. Ai (2013) in his 

research stated that the median statistic of the retro-intensity values above the minimum 
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retroreflectivity MUTCD requirements (after correlating with retro-reflectivity) can be an 

adequate indicator to determine the overall condition of a traffic sign. In addition to a 

median, the sign retro-intensity statistics, such as percentiles, can be used with higher 

confidence to categorize the signs as good or poor. For example, if the 25th percentile of 

the sign’s retro-intensity distribution (a value at which 75% of the retro-intensity is better 

than this value) is greater than a certain threshold, the sign can be classified as good. 

Determine the suitable retro-intensity criteria to classify the sign retro-reflectivity 

condition category 

In this step, the suitable statistics to classify the retroreflectivity condition are determined. 

First, the correlation between the retro-reflectivity measurement and the retro-intensity is 

established to determine the minimum retro-intensity (MR), a threshold value for 

minimum sign retro-intensity below which it does not meet the MUTCD requirement for 

retroreflectivity. Next, using the retro-intensity statistics and the MR, the criteria to 

classify the retroreflectivity condition as good, poor, or uncertain is determined.    

Establish the correlation between the retro-reflectivity points and the retro-intensity 

points  

In order to establish an accurate correlation between the retroreflectivity and retro-

intensity, similar location LIDAR retro-intensity need to be measured.  Figure 4-3 shows 

an example of retro-reflectivity measurement and the corresponding retro-intensity 

measurement for establishing the correlation between the two values. In the first step, 

four-point measurements are made at four locations on the signs using the 

retroreflectometer per the standard procedure (ASTM E1709) in the four quadrants of the 
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sign. In the second step, the LIDAR retro-intensity points of the signs are projected to a 

2D plane, and the retro-intensity points around (roughly 10 cm) the four retro-reflectivity 

measurement locations are selected. For retro-intensity measurements made in each 

location, the median retro-intensity value is computed.  

  

Figure 4-3. Illustration. Locations for retro-reflectivity. 

Next, the retroreflectivity and corresponding median retro-intensity points are plotted to 

establish a correlation and determine the MR, a threshold value for the minimum sign 

retro-intensity below which the retroreflectivity is deemed to have failed the MUTCD 

requirement. Good and poor condition signs were collected with the help of GDOT 

engineers to establish the correlation between retro-reflectivity and the retro-intensity for 

different colors and to determine the MR. Signs with prismatic sheeting type were chosen 

for determining the MR because this sheeting type is predominately used on interstate 

signs.  The MUTCD specifies minimum requirements for retroreflectivity values for 

yellow (50 cd/lx/m2), green (15 cd/lx/m2), and white (50 cd/lx/m2) background-colored 

signs. Therefore, the MR is determined for only green, yellow, and white signs. Figure 
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4-4, Figure 4-5, and Figure 4-6 show the MR determination for green, yellow, and white 

prismatic signs as  0.78, 0.76, and 0.76, respectively.  

 

Figure 4-4. Graph. Correlation between retro-reflectivity and retro-intensity and 

determination of MR for green prismatic sheeting type signs. 

 

 

Figure 4-5. Graph. Correlation between retro-reflectivity and retro-intensity and 

determination of MR for yellow prismatic sheeting type signs. 
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Figure 4-6. Graph. Correlation between retro-reflectivity and retro-intensity and 

determination of MR for white prismatic sheeting type signs. 

 

Determine the criteria to classify the sign retroreflectivity category from the sign’s 

retro-intensity values  

The following are the proposed categories for classifying signs as good, poor, or 

uncertain.  

○ Good category: The entirety or a majority of a sign’s retro-intensity values are 

higher than MR. Quantitatively, the 25th percentile value is required to be larger 

than the MR. This ensures a high confidence when a sign is classified as good. 

○ Poor category: A portion or the entirety of a sign’s retro-intensity values are 

below MR. Quantitatively, the 50th percentile value (or median) is less than the 

MR. 
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○ Uncertain category:  Quantitatively, the 25th percentile of a sign’s retro-intensity 

is less than the MR and the median is greater than the MR.  

 Examples of the three categories described above are shown in Table 4-2 using the MR 

(0.76) determined for yellow prismatic sheeting.  For each color and sheeting type, the 

criteria would be the same, but only the MR value would be changed depending on the 

retroreflectivity and retro-intensity correlation, and the minimum MUTCD- required 

retroreflectivity.  

Table 4-2. An example of sign retro-reflectivity condition classification using yellow 

prismatic sheeting signs with MR = 0.76. 

 

Map the signs with their retro-reflectivity condition category (good, poor, uncertain) 

on the road network 

The third and the final step of the proposed method is to map the retroreflectivity 

condition of the signs by their condition category (good, poor, or uncertain) on the road 

network. This step is useful for locating the signs with different retroreflectivity 

conditions so that they can be screened and prioritized for further field assessment. Since 

the LIDAR technology collects the 3D points of the signs, the sign’s location is obtained 

by computing the centroid of the 3D point cloud of the sign. The centroid value of the 

sign represents the location information (latitude, longitude, and altitude) and the 
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attribute information is represented by the sign’s retroreflectivity condition category. The 

sign location and its retroreflectivity condition category are plotted on a map to visualize 

them on the road network.  

VALIDATION OF SIGN RETRO-REFLECTIVITY CONDITION 

ASSESSMENT 

The proposed method of assessing sign retroreflectivity condition category is developed 

based on the retroreflectometer measurements. However, GDOT conducts its sign 

assessment using the nighttime visual inspection method. Therefore, this section validates 

the proposed sign retroreflectivity condition assessment results with the GDOT 

inspector’s assessment using same set of signs.  

The Georgia Tech research team contacted the GDOT sign shop and District 7 Area 

office to collect the signs required to conduct the analysis. A total of 56 signs were 

collected, including different color and sheeting types. Among them, only 36 were of 

prismatic sheeting type. This is of interest to this research because the interstate signs are 

predominately of the prismatic sheeting type. Thirty signs in green, yellow, white, and 

blue backgrounds of prismatic sheeting type were collected.  

An experiment was set-up to validate the proposed method by comparing the results with 

the nighttime visual inspection assessment. All the collected signs were assessed at 

Georgia Tech’s campus on March 7, 2019, by the sign inspector from GDOT in the same 

manner as done normally for Georgia’s state highway road signs. The test was performed 

30 minutes after the sunset at 9.00 pm. A Georgia Tech parking lot was chosen for the 

visual assessment. The distance between the sign and the test vehicle was kept to 



 

50 

approximately 300 feet to replicate the real-world, night-time sign inspection method. 

The aerial view of the experiment set-up is shown in Figure 4-7. A tripod was set up at 

approximately 300 feet to hold the signs for the inspector to assess. After each 

assessment, the signs were replaced. The inspector assessed the signs and assigned 

“acceptable” or “unacceptable”. Signs that that did not sufficiently reflect the headlight 

illumination or were dirty were put into the “unacceptable” category. Others were labeled 

as “acceptable” even when they were broken or had graffiti but still had high retro 

reflectivity.  

 

Figure 4-7. Photo. The experimental setup created in Georgia Tech campus parking 

lot for GDOT inspector to assess the collected signs. 
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Figure 4-8 shows an example of a traffic sign (STOP) at the Georgia Tech campus and a 

test sign placed underneath it; these were assessed as unacceptable or acceptable by the 

GDOT inspector.   

 

Figure 4-8. Photo. An example of poor (unacceptable) and good (acceptable) sign.  

 

The retroreflectivity of all these signs was measured using a DELTA RetroSign 

retroreflectometer. The resulting R A values represent the retroreflectivity at an entrance 

angle of -4 degrees and an observation angle of 0.2 degrees. Four retro-reflectivity 

measurements were typically made for each sign, and the average value in (cd/lx/m2) was 

recorded. If there were   more than one retroreflective color on a sign or if the legend was 

also retroreflective, four measurements of each color were taken and averaged. The 

average of the readings for each retroreflective color was compared with the MUTCD 

standard to determine the sign’s retroreflective condition. 

Finally, the Georgia Tech Sensing Van (GTSV), equipped with LIDAR, was used to 

collect the LIDAR data on the signs. Due to the limitation of acquiring the signs, only a 

limited number of signs were captured for assessment using LIDAR. The signs were 
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placed on tripods to hold them upright. The experimental set-up for the LIDAR data 

collection at the Georgia Tech campus for the yellow prismatic signs is shown in Figure 

4-9. The signs were spaced approximately 10 meters apart and were placed at a 90-degree 

angle to travel direction to mimic the on-road condition. Four to 6 signs were set up in 

each round. The LIDAR data was collected from approximately, 10 m to the signs.  

 

Figure 4-9. Photo. Experimental setup for sign LIDAR data collection at Georgia 

Tech campus. 

 

Table 4-3 shows the number of prismatic signs in different colors that were tested using 

the retroreflectometer method, the visual inspection method, and the proposed method 

using LIDAR technology. 

Table 4-3. Number of signs tested with different colors and methods. 

Sign Color 
Total number of 

signs 

Retro-reflectivity 

method 

Visual 

inspection 

method 

Proposed 

LIDAR based 

method 

White 8 8 8 5 

Yellow 9 9 9 6 

Green 7 7 7 3 
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The nighttime visual inspection results are used for validating the sign retroreflectivity 

condition assessment method developed in the previous section. The retroreflectometer 

readings were used to establish the correlation between the retroreflectivity and the retro-

intensity value and to determine the MR for each color of the prismatic sheeting type. 

The developed criteria for the sign retroreflectivity condition classification was then 

validated with the visual inspection results. Table 4-4 compares the visual inspection 

results and the sign retroreflectivity condition category obtained by the proposed method 

for the 14 signs  (yellow, white, and green prismatic sheeting types).  

Table 4-4. Comaprison of nighttime visual assessment result and the retro-

reflectivity condition. 

Sign 

No. 

Color GDOT inspector’s retro-

reflectivity assessment result 

Retroreflectivity condition 

category by proposed method 

Match 

1 Yellow Unacceptable Poor YES 

2 Yellow Unacceptable  Poor YES 

3 Yellow Unacceptable  Poor YES 

4 Yellow Acceptable Good YES 

5 Yellow Acceptable Uncertain NO 

6 Yellow Acceptable Uncertain NO 

7 Green Unacceptable Poor YES 

8 Green Acceptable Good YES 

9 Green Acceptable Good YES 

10 White Acceptable  Good YES 

11 White Acceptable  Good YES 

12 White Acceptable  Good YES 

13 White Unacceptable  Poor YES 

14 White Acceptable  Uncertain NO 

 

The developed method for categorizing the retroreflectivity condition using the mobile 

LIDAR shows promising results. From the 14 signs, 11 signs were correctly classified. 

All the signs that failed by the nighttime visual assessment method were correctly 

classified as “poor” by the developed method. Three signs (Nos. 5, 6, and 14) were 
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classified as “uncertain” by the proposed method despite being passed by visual 

inspection for retroreflectivity. The main reason for this classification is the presence of 

localized marks or cracks on the signs, which can result in gathering low retro-intensity 

values. shows the three signs that were categorized as uncertain by the proposed method. 

One can observe that the Sign No. 5 (as shown in Figure 4-10 (a)) has graffiti at the 

bottom half and Sign No. 14 (as shown in Figure 4-10 (b)) has mud spots on the right. 

Sign No.6 (as shown in Figure 4-10 (c)) is classified as “uncertain” because there were 

many cracks on the sign, and the cracked part of the sign gives a low retro-intensity 

reading. 

                                                    

        A. Subfigure of sign with graffiti                        B. Subfigure of sign with mud spots 

 

C. Subfigure of sign with cracked surface 

Figure 4-10. Photos. Signs with uncertain retroreflectivity condition. 

 

Based on the validation results, the proposed method is promising in categorizing the 

different retroreflectivity conditions. To ensure roadway safety, transportation agencies’ 

priority should be to identify signs with poor retroreflectivity and replace them in a 
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timely manner. However, to review thousands of signs in their network is time-

consuming. Therefore, the proposed method intends to confidently identify the good 

category signs so transportation agencies can only screen and focus their efforts on the 

remaining (smaller number) of poor and uncertain categorized signs in the network.  

CASE STUDY  

This section presents a case study to demonstrate the use of the proposed method using 

the traffic signs on the Interstate-285. The LIDAR data was acquired using right side 

LIDAR of the GTSV on August 8, 2018; therefore, 3D data was collected only from 

signs on the right side of the road. After data processing and screening, 338 signs were 

extracted and used for this case study. The proposed sign retroreflectivity condition 

assessment method was used to classify the 338 signs. Since the color for each sign was 

unknown, a lower MR value (0.75) was used in the proposed method for this 

demonstration. Sixty-seven signs were classified as “poor,” 47 signs were classified as 

“uncertain” and the remaining 224 signs were classified as “good.” Figure 4-11 shows 

the map of the signs with different retro-reflectivity condition.   
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Figure 4-11. Map. Signs in good, uncertain, and poor retro-reflectivity condition on 

GA Interstate-285. 

 

Figure 4-12 shows an example of some of the signs that were classified as poor. The 

typical concerns observed with the poor signs are that they are old, faded, or dirty (as 

seen in Figure 4-12 (a), Figure 4-12 (b), and Figure 4-12 (c)).  Figure 4-12  (d) shows a 

sign that is clean and not faded; however,  the sheeting type used does not appear to be 

prismatic sheeting type. This explains the poor classification of the sign, since the retro-

reflectivity of this sheeting type falls under the “poor” category criteria set by the 

proposed method.    
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A. Subfigure of example 1             B. Subfigure of example 2 

 

C. Subfigure of example 3                        D. Subfigure of example 4 

Figure 4-12. Photos. Example of signs in poor condition. 

 

Sixty-seven percent of the selected signs on I-285 are found to be good using the 

proposed method. So, the GDOT inspectors may only focus on the remaining 33% that 

are in the poor or the uncertain category to visually assess and determine if they require 

replacement or other corrective actions (such as cleaning). Overall, the proposed method 

can potentially reduce the GDOT engineers’ inspection efforts by approximately 60% 

and reduce their exposure to unsafe assessment conditions on the road.  
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SIGN RETO-INTENSITY CHANGE ANALYSIS (2015 – 2018) 

LIDAR technology not only helps in assessing the sign retroreflectivity condition, but 

also in analyzing the retroreflectivity change (deterioration) behavior. Multi-year LIDAR 

cloud data can be used to establish and analyze the change in sign reflectivity conditions 

over time and, thus, give insights to the overall deterioration behavior. This section 

presents a few examples of sign retroreflectivity deterioration behavior from 2015-2018 

by analyzing the signs’ retro-intensity data. The key statistics of the signs’ retro-intensity 

(median, 25th percentile, and 75th percentile) are captured once every year, and they are 

plotted to see how these statistics change over the years. For this study, I-285 is selected 

as the test corridor and signs of different types and colors are studied. Figure 4-13 shows 

the different signs and their retro-intensity behavior. From Figure 4-13 , it is seen that the 

retro-intensity increases suddenly for all signs in one of the years except for Figure 4-13 

(d). It can be presumed that this sudden rise in retro-intensity is due to the signs’ being 

cleaned intentionally by maintenance teams or by rainfall. It is important to note that dirt 

on a sign can reduce the retro-reflectivity by more than 20 percent; cleaning a sign can 

raise the retro-reflectivity by 20 percent.  

The Georgia Tech research team conducted an analysis by conditioning a prismatic sign 

sheet with dirt. Water mixed with dirt in the ratio of 10:1 was applied on the sheet and 

allowed to dry for 5 hours. This was to simulate the dirt that accumulates on a sign. The 

average 4-point sign retro-reflectivity measured was 158 cd/lx/m2 at the beginning of the 

experiment, and after the conditioning, the average 4-point sign retro-reflectivity dropped 

to 119 cd/lx/m2, a drop of 24%.  
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Figure 4-13. Multiple Elements. Retro-intensity deterioration trends from 2015 to 

2018 for six selected signs on I-285. 
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This experiment shows that dirt can significantly reduce the retro-reflectivity. By 

analyzing the signs in Figure 4-13 that have a retro-intensity rise in one of the years, it is 

seen that the retro-intensity rise is less than 20 percent of its previous value, confirming 

some form of  sign cleaning has caused the retro-intensity to go up. Alternatively, 

the ”accident investigation” sign that shows continuous deterioration in Figure 4-13 (d) 

is reproduced in Figure 4-14. 

 

                  

Figure 4-14. Multiple Elements. Retro-intensity over four years for white sign. 

 

The photos obtained for this sign shows four consecutive years of deterioration without 

interruption by the cleaning operation. Based on this data, the predicted rate of retro-

intensity deterioration is -0.066 per year. However, as evidenced in the photos from 2017 

and 2018, the surface of the sign seems to be obscured by dirt. Because of this, it is not 
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clear how much of the decrease in retro-intensity can be attributed to natural deterioration 

of the sheeting and how much is solely due to the sheeting being blocked by mud. 

Overall, it is promising to observe the signs’ retro-intensity deterioration behavior for 

more years beside the one year of cleaning, especially where retro-intensity increases 

suddenly. Due to the unpredictable factors of dirt accumulation and sign cleaning, 

deterioration behavior may not be conclusive for the field sign deterioration analysis 

without consistent measurement (such as cleaning before each retro-intensity 

measurement). To determine the deterioration behavior of sign sheeting outside of the 

influence of dirt, an analysis must be done under controlled and consistent conditions to 

yield more consistent results. 

SUMMARY 

The following is a summary of sign retro-reflectivity study using mobile LiDAR: 

o Traffic sign retro-reflectivity is important because it conveys crucial navigation 

information of the roadway to drivers at night; this information enables drivers to 

drive safely.  

o There are many challenges with current sign retro-reflectivity condition assessment 

methods (the nighttime visual inspection method and the retroreflectometer 

measurement method). They are labor-intensive, time-consuming, dangerous to the 

workers, involve subjective human assessment, and are constrained by available 

assessment time (only at night) for visual inspection, or constrained by limited 

sampling points for the retroreflectometer method. Because of the time-consuming 

nature of these assessment methods, sign retro-reflectivity condition assessments are 
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typically only done once per year, so low retroreflectivity signs may stay up for quite 

a long time without being replaced. An alternative to individual sign assessments, the 

blanket replacement method is simple because it replaces all signs and ensures their 

retro-reflectivity values are above the required levels; however, this method is not 

economical because some signs may not need replacing.    

o Sign retroreflectivity condition data collection using mobile LIDAR is quicker (data 

collected at 100 km/h), safer (no need to stop for each sign at the side of the road), 

more efficient (data can be collected any time of the day), objective (does not require 

a human’s subjective assessment, such as nighttime visual inspection), captures more 

points (typically greater than 100) than the 4-points sign retro reflectivity 

measurements, and is cost-effective. A new method is developed to assess the sign 

retroreflectivity condition category (good, poor, uncertain) using the sign’s point 

cloud data collected by the LIDAR technology. The two main steps involved in this 

method include 1) computing the retro intensity statistics (such as median and 25th 

percentile) for the sign point cloud data, and 2) classifying the sign retro-reflectivity 

condition category (good, poor, uncertain) based on the proposed minimum retro-

intensity (MR) criteria. MR is defined as the retro-intensity value at which the 

retroreflectivity meets the minimum MUTCD requirement and is obtained by 

correlating the retro-intensity with retro-reflectivity measurements.  

o The proposed method was validated using the nighttime visual inspection using signs 

collected from GDOT. The assessment was performed by a GDOT inspector who 

classified the signs as “acceptable” or “unacceptable” based on the retroreflectivity. 

All the signs that failed the nighttime visual assessment method were correctly 
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classified as “poor” by the proposed method; among the signs that passed, three signs 

were categorized as “uncertain” due to localized defects on the sign, such as dirt, 

cracking, and graffiti.  

o A case study was performed on I-285 to assess the feasibility of the proposed method 

by collecting LIDAR data on selected interstate traffic signs.  Among 338 selected 

signs, 67% of the signs were classified as “good”, and 33% of the signs were 

classified as “poor” or “uncertain”. From this case study’s results, we can clearly see 

that GDOT can potentially reduce sign retroreflectivity condition assessment effort by 

approximately 60% on I-285 by screening out the “good” retro-reflectivity signs.  

GDOT inspectors may only need to assess the remaining 40% of signs in the “poor” 

and “uncertain” category to determine if they require replacement or cleaning. 

o Finally, a study was conducted to assess the retroreflectivity deterioration behavior of 

selected signs using the retro-intensity data collected on them over the past 4 years. 

Promising trends for retro-intensity behavior change can be observed on few signs. 

However, due to the unpredictable factors of dirt accumulation and sign cleaning, the 

deterioration trends may not be consistent when analyzed for all the signs in the field. 

Dirt reduces the retro-intensity statistics, and cleaning increases the retro-intensity 

statistics. Therefore, it is recommended that the retro-intensity deterioration analysis 

be performed under controlled conditions (clean the signs before retro-intensity 

measurement) to yield more consistent results.  

o Autonomous vehicles constantly collect LIDAR data for their navigation. In the 

future, it will be possible to assess the sign retro-reflectivity condition dynamically by 

using the proposed method to collect LIDAR data gathered by autonomous vehicles. 
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Moreover, using crowd- sourced dynamic sign retroreflectivity condition assessment 

data from multiple autonomous vehicles making multiple runs along a route, a traffic 

sign’s retro-reflectivity condition for that route can be frequently monitored and 

replaced proactively when the retroreflectivity drops below required levels.  
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CHAPTER 5. ASPHALT PAVEMENT CONDITION 

EVALUATION 

 

DISTRESSES DEFINED IN PACES 

GDOT’s statewide pavement maintenance budgeting and programming are based on its 

pavement condition evaluation system, which provides essential data for determining 

treatment methods, estimating costs, and selecting projects. Since 1986, GDOT has 

conducted annual pavement condition evaluations on its entire 18,000-centerline-miles of 

state routes based on the PACES survey (GDOT, 2007), which was developed by GDOT. 

PACES was enhanced and upgraded to the COPACES in 1998 (Tsai & Lai, 2002), a 

paperless system that enhanced data quality and improved the efficiency of the field data 

collection system. COPACES surveys were performed by GDOT’s engineers during the 

winter (September to February) without having to employ additional resources.  The past 

manual surveys conducted using COPACES involved recording the severity and extent of 

various types of pavement surface distresses, including cracking, rutting, raveling, 

potholes, etc. For cracking, a 100-foot representative section was selected for a detailed 

walking survey to determine the severity and extent of distresses; the section would 

represent the 1-mile segment (GDOT, 2007). For other distresses, a windshield survey 

was carried out over a continuous 1-mile segment. The distresses recorded for all the 

segments (which are typically one-mile long, except for the first and last segment) are 

aggregated/averaged to obtain the representative pavement condition for a project 

(typically several miles long). A COPACES rating (on a scale of 0 to 100 with 100 
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representing a pavement in excellent condition) is then computed based on the extent and 

the severity level of each distress for each segment and project. To enable uniform, 

impartial data collection and reporting across Georgia, COPACES establishes 

standardized nomenclature for distresses and defines their respective severity levels and 

measurement method. There are ten distresses surveyed in COPACES. They are rutting, 

load cracking, block cracking, reflective cracking, raveling, edge distress, 

bleeding/flushing, corrugation/pushing, loss of section, and patches/ potholes, as listed in 

Table 5-1Error! Reference source not found.. The distress types are categorized and 

associated with potential causes of the pavement defects, so the data can be used for 

determining the treatment method. For example, longitudinal cracking and fatigue 

cracking occurring within the wheel path are considered as load-related cracking (i.e., 

load cracking), and block cracking is considered as non-load-related cracking due to 

aging and weathering.  

Table 5-1. Asphalt pavement distresses defined in COPACES. 

Distress Unit Severity Survey Length 

Load Cracking % 1, 2, 3, 4 100-foot 

Block Cracking % 1, 2, 3 100-foot 

Reflection Cracking Number, Foot 1, 2, 3 100-foot 

Edge Distress % 1, 2, 3 1-mile 

Rutting 1/8 inch - 100-foot 

Patches/Potholes Number - 1-mile 

Bleeding % 1, 2, 3 1-mile 

Raveling % 1, 2, 3 1-mile 

Corrugation % 1, 2, 3 1-mile 

Loss of Section % 1, 2, 3 1-mile 
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Due to the advancement of sensing technology and the shortage of internal manpower, 

GDOT has started to outsource its statewide pavement condition survey.  However, the 

distress protocol defined in PACES needs to be preserved in order to make sure the new 

data consistent with the historical data.  In this project, the extracted pavement condition 

data is fully compatible with PACES.  Thus, the results can also be used by GDOT to 

compare with the data acquired from an outsourced contractor. 

STREAMLINED PROCEDURE  

The streamlined procedure for asphalt pavement condition evaluation has been applied in 

previous project (RP 15-11), which was continuously used in this project.  To improve 

the accuracy of raveling detection and classification, an enhanced QA/QC procedure was 

adopted.  The following introduction in this subsection is included in the final report of 

RP 15-11.  However, to make this report a self-contained one, the introduction is still 

kept in this final report. 

The streamlined procedure for pavement condition evaluation follows GDOT’s 

COPACES survey method.  The procedure utilizes both the automated methods for 

pavement distress extraction (including cracking, rutting, and raveling) and several 

customized interactive tools for the extraction of other characteristics.  Figure 5-1Error! 

Reference source not found. shows the flowchart of the proposed procedure, which 

consists of five primary steps. The QA/QC steps are used to guarantee the quality of the 

extraction results. Since the automatic results are generated covering all the interstate 

highways using the interval of a frame in the sensing data collection (i.e., 5 m), the steps 

of the COPACES boundary identification and COPACES rating generation steps were 
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proposed to summarize the automatic results into a COPACES reporting unit, i.e., 

segments and projects.  New reporting segments and projects are generated for the 

locations without any previous COPACES reporting.  

 

Figure 5-1. Flowchart. Streamlined procedure for asphalt pavement data collection 

and processing. (Jiang & Tsai, 2016; Tsai, 2015; Tsai & Wang, 2014; Tsai & Li, 

2012). 

 

COPACES Reporting using Automatic Results 

Because the automatic results are reported based on the interval of data frame acquisition, 

i.e., a 5-m interval, the COPACES reporting from the automatic results requires spatial 

correlation and aggregation. Especially for cracking (including load crack, block crack 

and reflective crack), the COPACES reporting is generated based on a 100-foot 
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representative section within the survey segment. Therefore, two procedures were 

proposed for spatially correlating the COPACES survey segments and for aggregation 

and selection of the representative 100-foot section.  

Spatial correlation for COPACES survey segments 

The collected sensing data are geo-referenced using accurate GPS coordinates so that the 

results of automatic pavement distress extraction are also geo-referenced with the same 

GPS coordinates. First, the pavement surface type is identified for all the interstate routes 

using the geo-referenced image frames. After spatially joining each data frame to 

GDOT’s linear referencing system, comprised of RCLINK and mile point, a map is 

created as shown in Figure 5-2Error! Reference source not found. to define the 

pavement type of interstate routes as either asphalt concrete, JPCP, or CRCP. In 

summary, the data collected cover a total of 1,250 centerline miles out of which 54.8% 

are asphalt concrete, 38.0% are JPCP, and 7.2% are CRCP. In this chapter, asphalt 

concrete pavements are selected for further analysis. Next, the selected data frames are 

matched to their corresponding COPACES segments identified in the project RP 15-11.  

The segments are then aggregated according to the projects defined by the COPACES 

dataset.  All the projects that are greater than 10 miles are double-checked to ensure the 

pavement conditions and characteristics are homogeneous within the limit. Therefore, 

after filtering out corrupted and missing data, more than 400,000 frames were used to 

compute the COPACES rating of the interstate asphalt pavement segments and projects.  
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Figure 5-2. Map. Georgia’s interstate pavement surface type. 

100-foot representative section aggregation and selection for crack survey 

 In COPACES, a walking survey is conducted for cracking in a 100-foot representative 

sample section in each 1-mile segment. Using the automatic pavement distress extraction 

results, the research team reports the detailed difference for each data frame (i.e., 5 m 

interval). Therefore, for each 1-mile segment, the automatic results can generate fifty-two 

100-foot sections, whereas results from six data frames are aggregated for the 

corresponding 100-foot section. Figure 5-3Error! Reference source not found. 
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illustrates the fifty-two 100-foot sections reported within a 1-mile segment. In order to 

mimic the selection criteria performed by GDOT for a representative section, the deduct 

value for each individual section is computed, whereas a 60th percentile of the deduct 

distribution is used for selecting the “representative” section to represent the 1-mile 

segment. Therefore, the severity level and extent values for the selected “representative” 

section are used to represent the entire 1-mile segment. The percentile is calibrated by 

comparing the results from the automatic crack extraction, and the results are manually 

reviewed by field engineers from GDOT. It is observed that the 60th percentile can best 

capture the field engineers’ judgment in selecting the “representative” section. It should 

be noted that although a 60th percentile is used to generate the COPACES ratings in this 

study, the derived results using the automatic distress extraction have the capability to 

generate a full-coverage, continuous crack severity level and extent values without the 

need to aggregate them into a  “representative” 100-foot section artificially.  

 

Figure 5-3. Chart. Fifty-two 100-foot sections reported within a 1-mile segment. 
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RESULTS 

The COPACES ratings were computed for a total of 1,289 surveyed miles of asphalt 

pavement data that were collected using the GTSV. Figure 5-5 shows the mapped results 

of the derived COPACES ratings. Overall, the pavement condition on interstate highways 

in Georgia is acceptable, except for a few sections on I-75, I-85, etc. As seen in Figure 

5-5Error! Reference source not found., the project ratings range from 60 to 99, with an 

average rating of 82 for all projects.  There are 16 projects with a rating of 70 or below, 

thus requiring some maintenance action, such as resurfacing.     

 

Figure 5-4. Chart. Project COPACES rating histogram. 

 

Detailed COPACES deducts in the major distresses, such as load cracking, block 

cracking, raveling, and rutting, were further studied.  As shown in Figure 5-6 , it can be 

observed that the overall deduct values related to load cracking and block cracking are 

relatively low,  most of them being below 6 points; this indicates that a low extent and 

low severity level are mostly identified along the surveyed pavements. Similarly, rutting 
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deduct values were mostly below 5 points (i.e. less than ¼ inch). On the other hand, 

raveling is the major contributor to the project rating reduction with around 75% of the 

projects having a raveling deduct value of 10 or above, which indicates more than 36% 

extent are Severity Level 1 or more than 15% are Severity Level 2.  

 

Figure 5-5. Map. Derived COPACES ratings using the proposed method. 
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A. Subfigure of load cracking deduct 

values map 

B. Subfigure of load cracking deduct values 

map 

  

 
C. Subfigure of raveling deduct values map 

 

D. Subfigure of rutting deduct values map 

 

Figure 5-6. Maps. Major pavement distresses’ deduct values. 
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COMPARISON WITH 2015 PAVEMENT CONDITION DATA 

By comparing the results obtained in a previous GDOT research project, RP 15-11, we 

notice that the average rating has dropped from 85.6 to 82. This shows that the network 

level condition is dropping and more funding may be required. Raveling continues to be 

the major contributor to the reduction in project ratings. Figure 5-7 shows the 

comparison of COPACES project ratings derived using the same method for 2015 and 

2018.  

              

          A. Subfigure of 2015 Map     B. Subfigure of 2018 Map 

Figure 5-7. Maps. Comparison between 2015 and 2018 Project Ratings. 

 

As shown in the above maps, the project ratings have dropped as expected at different 

rates depending on several factors affecting pavement deterioration behavior such as 

design, traffic, climate, etc. On the other hand, an increase in project rating was also 

noticed for projects where resurfacing or some form of maintenance has been performed. 
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Three spots where a noted increase of rating between 2015 and 2018 were highlighted in  

Figure 5-7 (B) for further analysis. Figure 5-8 shows the comparison of images collected 

using GTSV for ‘Spot 1’ located on I-75 south-bound where complete resurfacing has 

been performed over the project length and road width. Figure 5-9 shows the 2018 

images of ‘Spot 2’ located on I-95 NB and SB where partial resurfacing has been 

performed for selected segments. Figure 5-10 shows an image comparison of ‘Spot 3’ 

located on I-75 NB near Macon where partial resurfacing has been conducted on the 

truck lane only.  

 

   

                  A. Subfigure of 2015                            B. Subfigure of 2018  

Figure 5-8. Photos. Comparison of spot 1 northbound resurfacing between 2015 and 

2018. 
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              A. Subfigure of 2018 NB                      B. Subfigure of 2018 SB 

Figure 5-9. Photos. Spot 2 northbound and southbound partial resurfacing. 

        

                A. Subfigure of 2015                                     B. Subfigure of 2018 

Figure 5-10. Photos. Comparison of spot 3 northbound truck lane resurfacing 

between 2015 and 2018. 
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SUMMARY 

By using the streamlined method for pavement condition evaluation, a comprehensive 

rating was performed for all asphalt pavement projects on interstate routes. As a result, 

the network condition was shown to be acceptable with an average rating of 82 for all 

projects; however, this is a drop from 85.6 in 2015. Thus, more funding and maintenance 

optimization is required to improve the network-level project rating.  
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CHAPTER 6. PCC PAVEMENT (JPCP) CONDITION 

EVALUATION 

OVERVIEW OF JPCP AND RATING SYSTEM 

GDOT currently maintains 783 centerline miles of rigid pavements on Georgia’s states 

routes, mainly on the interstate highways (GDOT, 2017).  The rigid pavements account 

for merely 4.36% of the entire state route network of 17,959 miles.  However, they play a 

critical role in freight transportation, as they carry more than 20% of Georgia’s truck 

traffic (Tsai, 2016).  Rigid pavements include continuously reinforced concrete pavement 

(CRCP) and jointed plain concrete pavement (JPCP).   Eighty-nine centerline miles of 

CRCP and 475 centerline miles of JPCP total 564 centerline miles of rigid pavements on 

Georgia’s interstate highways.  Around 84% of rigid pavements are JPCP, and most of 

these JPCP were built between 1958 and 1986.  Since many of them are reaching the end 

of their service lives, JPCP condition assessment survey is critical for their maintenance, 

rehabilitation, and reconstruction (MR&R); it is also important for identifying budget 

needs.  GDOT has conducted JPCP condition evaluations since the 1970s based on its 

concrete pavement condition evaluation system (CPACES), which was revised in the 

1990s to standardize the JPCP survey in terms of distress types and severity levels.  In 

2016, an enhanced JPCP Condition Evaluation System (JPCPACES) was developed by 

the Georgia Tech research team to better monitor the severe distresses of aged JPCP (Tsai 

& Wu, 2019).  Surveys conducted using JPCPACES involve recording 11 categories of 

JPCP distresses and pavement roughness (IRI) in the outside lane at 1-mile intervals.  A 

JPCPACES rating scale of 0 to 100 (with 100 representing excellent condition) is 
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computed based on 8 out of 11 categories of distresses and IRI, shown with bolded words 

in Table 6-1.  The purposes of recording 3 categories of distresses in JPCPACES is to 

predict how many slabs will be replaced and to evaluate the performance of replacement 

materials, though these 3 distresses didn’t directly contribute to deduction points.  To be 

noted is that when counting broken slabs, JPCPACES didn’t differentiate original or 

replaced slabs.  So, all the failed slabs actually impact the rating.  

Table 6-1. JPCPACES Survey Distresses. 

Distress Type Sample Location Severity Unit 

Faulting Every 8th joint - Faulting Reading (1/32”) 

Slabs with transverse crack 1 mile 
Level 1 

# of slabs 
Level 2 

Slabs with longitudinal crack 1 mile 
Level 1 

# of slabs 
Level 2 

Corner break 1 mile - # of slabs 

Shattered slab 1 mile - # of slabs 

Replaced slab 1 mile - # of slabs 

Failed replaced slab 1 mile - # of slabs 

Joint with spalls 1 mile - # of joints 

Joint with patched spalls 1 mile - # of joints 

Joint with failed spalls patches 1 mile - # of joints 

Shoulder joint distress 1 mile - % of mile 

Roughness (IRI)1 1 mile - mm/km 

Note: (1) Faulting is collected using a Georgia Faultmeter (GFM). 

(2) Roughness is collected by the Laser Profiler. 

JPCPACES ratings are calculated using a maximum score of 100 and minus 6 deduct values.  

These 6 deduct values are combined from 8 categories of distresses and IRI.  The combination 

and calculation can be found in the following function and annotations:   
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𝑅𝑎𝑡𝑖𝑛𝑔 = 100 − 𝐷𝐹𝐼 − 𝐷𝑆𝑀 − 𝐷𝐶𝑆 − 𝐷𝐿𝐶 − 𝐷𝑆𝐷 − 𝐷𝑆𝑃 

Where: 

• 𝐷𝐹𝐼: Deduct value for Faulting Index 

• 𝐷𝑆𝑀: Deduct value for Smoothness  

• 𝐷𝐶𝑆: Deduct value for Cracked Slabs (consist of slabs with transverse cracks, 

corner break slab and shattered slab)  

• 𝐷𝐿𝐶: Deduct value for Longitudinal Cracks  

• 𝐷𝑆𝐷: Deduct value for Shoulder Distress  

• 𝐷𝑆𝑃: Deduct value for Spalls (consist of joint with spalls and Joint with failed spall 

patches) 

STREAMLINED PROCEDURE USING 3D PAVEMENT DATA  

In this study, JPCP condition assessment was conducted by using full-coverage, high-

accuracy 3D pavement data.  The pavement distresses were detected, classified, and 

measured using a semi-automatic method.  The condition rating system follows the 

current JPCPACES.  However, in comparison with the traditional windshield-based or 

walk-through methods, the new method is much faster, more objective, and accurate.  

Meanwhile, to leverage the advantages of the full-coverage and high-accuracy 3D 

pavement data, some of the previous limitations will be enhanced.  In the traditional 

walk-through method, faulting is only measured at every eighth transverse joint using a 

GFM in order to reduce the labor effort.  By using the full-coverage, high-accuracy 3D 

pavement data, we can now measure faulting at each single joint, which should be more 

accurate than the previous walk-through method.  
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Nevertheless, the processing of 3D pavement data is complicated.  By employing both 

automatic and manual processes, we have developed a streamlined procedure for data 

processing.  The streamlined procedure, as shown in Figure 6-1, aims to improve the 

productivity and reliability of data processing.  The procedure consists of five primary 

steps, including 1) sensing data collection and post-processing, 2) JPCP identification, 3) 

Joint detection, 4) JPCP distress extraction and 5) JPCPACES rating computation.  In the 

procedure, several automatic tools are used to conduct data post-processing, joint 

detection, IRI calculation, and joint faulting calculation.   QA/QC steps are used to 

guarantee the quality of the automatically extracted results.   
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Figure 6-1. Flowchart. Streamlined procedure for JPCP 3D pavement data 

processing. 
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3D JPCP Data Collection 

As previously mentioned, the GTSV is used for collecting 3D pavement data.  Although 

3D pavement data processing and analysis progress were divided into two parts (one for 

asphalt pavement and another for JPCP), data collection tasks were not separated for 

different types of pavement.  For example, I-75 south of Atlanta has combined asphalt 

data, JPCP and CRCP, which were continuously collected in one day.  However, 

additional efforts were needed to separate the collected data in terms of different types of 

pavement.  The results showed there are 564 centerline miles of PCC pavement on 

Georgia’s interstate highways, which consist of 475 centerline miles of JPCP and 89 

miles of CRCP.  After JPCP data are separated, more than 300,000 frames of 3D JPCP 

pavement images need to be processed for joint identification, distresses extraction, and 

IRI measurement.  

Joint Identification for JPCP Data 

 

Since JPCP is designed with contraction joints to control the location of expected cracks, 

JPCPACES is a slab-based rating system.  The joints between two adjacent slabs need to 

be accurately identified.  Thus, the total number of slabs in each mile can be accurately 

determined and the deductions of broken slabs can be computed.  In addition, the 

accuracy of a joint location is also very critical for area-based faulting calculation using 

3D pavement data.  For this reason, both an automatic joint-detection tool and a manual 

QA/QC tool were developed to ensure the efficiency and accuracy of joint detection.   
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JPCP Distress Extraction Method 

Though the JPCP distress extraction method has been changed from a windshield survey 

to automated 3D-pavement-data-based method, the distress extraction is still consistent 

with GDOT’s JPCPACES.  However, enhancement has been made to facilitate the use of 

full-coverage, highly accurate 3D pavement data.  For example, the exact crack length 

had been defined to differentiate Level 1 and Level 2 longitudinally- and transversely-

cracked slabs.  In addition, some limitations of windshield and walkthrough surveys were 

overcome by leverage the full-coverage, highly accurate 3D pavement data.  For 

example, a faulting index traditionally measured by a Georgia Faultmeter (GFM) 

required traffic control, which results in only one-eighth of the joints being collected to 

represent the average faulting index.  With the full-coverage 3D pavement data, the 

faulting at each joint can be conveniently measured.  The following briefly introduces the 

extraction/measurement of different JPCP distresses using 3D pavement data.   

Faulting Index 

 Full-coverage, continuous 3D JPCP data is used to calculate the faulting value.  Unlike 

the field measurement using a GFM, which only measures one point in the right wheel 

path at every eighth joint for a 1-mile segment, the automated method measures 24 

faulting values at each joint for each 1 mile.  Each faulting value is calculated by the 

difference of average height in two 50 mm × 100mm square area with 60 mm from each 

side of the joint.  These 24 areas are evenly distributed between two-lane markings.  The 

calculated result is the actual height difference in millimeters, which is different from the 

existing unit of the faulting index for calculating deduct values.  For this reason, a new 

table for transferring the actual faulting height to the faulting index was developed.  As 
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mentioned in the JPCPACES manual, the faulting index 20 is equivalent to 3.2 mm of 

average faulting value, which has a 19 deduct value.  The detailed measurement 

procedures are introduced in Geary’s paper (Geary, Tsai & Wu, 2018).   

Slab Classification  

To improve the efficiency and consistency of slab classification, the definitions of 

different categories of broken slabs have been enhanced.  The enhanced definitions are 

more objective than the previous ones due to the use of quantitative crack lengths for 

each category of cracked slabs.  For example, at Severity Level 1, the longitudinally 

cracked slab is defined as the one with longitudinal crack longer than 1 ft that starts at a 

transverse joint; and the Severity Level 2 is defined as the one with longitudinal crack 

longer than 75% of the slab length.  Meanwhile, a decision flowchart has been developed 

for slab classification.  For example, if a longitudinal Severity Level 2 longitudinal crack 

and a Severity Level 1 transverse crack occurred simultaneously, this flowchart will 

check whether it is a shattered slab or not, and then check if it is a Severity Level 2 

longitudinally cracked slab; it will finally check if it is a Severity Level 1 transversely 

cracked slab.  This flowchart is more logically intact and could avoid some of the 

ambiguity in previous definitions.  

Joint Defects 

There are three types of joint defects visually inspected in a JPCPACES survey.  They are 

joints with spall, joints with patched spalls, and joints with failed spall patches.  

However, only joints with spall and joints with failed spall patches were counted for 

calculating the deduct value of joint defects according to JPCPACES.  In this study, joint 

defects are manually identified during the slab classification and QA/QC processing 
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using 3D pavement data.  The criteria for identifying joint defect are consistent with 

JPCPACES. 

Shoulder Distress 

Previously, shoulder distresses were visually inspected based on their severity, and there 

are two severity levels defined in JPCPACES.  The “pumping” of the base material is a 

key criterion for visual inspection to identify the severity level.  However, pumping 

material is difficult to discern in 3D pavement data. Therefore, in this research, only joint 

depth and joint width are considered as rules to identify shoulder distresses and classify 

the severity levels.  

RESULTS  

In this study, the JPCPACES ratings were computed for 988 survey segments, and each 

segment represented 1 mile.  The overall JPCP condition of Georgia’s interstate 

highways is relatively acceptable with an average rating of 83.7 for all segments.  There 

are 178 segments with a rating below 70 and which potentially need maintenance or 

replacement.  The poor performing JPCP are located at I-85 north of Atlanta, I-20 west of 

Atlanta, I-20 east of Atlanta from MP 130-MP 150, I-16 near Macon and I-16 from MP 

80-MP 90.  

JPCPACES ratings were plotted for each 1-mile segment in Figure 6-2.   The detailed six 

categories of deducts, such as the deduct value for the faulting index, smoothness, 

cracked slabs, longitudinal cracks, shoulder distress, and joint spalls were further plotted 

separately in Figure 6-3 and Figure 6-4.  From the plotting results, the deduct value for 

the faulting index is highly correlated to the deduct value for IRI, which indicates the 
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faulting index greatly impacts a vehicle’s ride quality, and it is necessary to apply 

diamond grinding in those certain segments.  Moreover, it is found that the high deduct 

value for longitudinal cracks was mostly concentrated on I-20 west of Atlanta.   The high 

deduct value for shattered slabs was evenly distributed in all the segments with low 

JPCPACES ratings.   

 

Figure 6-2. Map. Derived JPCPACES rating using 3D pavement data. 
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A. Faulting deduct values map                       B. IRI deduct values map 

      

C. Long. cracking deduct values map                D. Cracked slabs deduct values map 

Figure 6-3. Maps. Major JPCP distresses’ deduct values. 
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A. Shoulder distress deduct values map                       B. Joint Spalling deduct values map 

Figure 6-4. Maps. Major JPCP distresses’ deduct values (continued). 

 

COMPARISON WITH HISTORICAL CPACES RATING 

The subsection compares the current JPCPACES rating (GT-2018-JPCPACES) with the 

historical CPACES rating (GDOT-Historical-CPACES).   

To compare the overall pavement condition on each interstate highway containing JPCP, 

the average overall rating, faulting, IRI, the percentage of shoulder distress and the 

number of T1, T2, L1, L2, SS, CC, and joint spall are summarized in the following Table 

6-2 for both GT-2018-JPCPACES and GDOT-Historical-CPACES, respectively.  The 

following summarize observations. 
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Table 6-2. Comparison between GT-2018 JPCPACES rating and GDOT historical 

rating.

 

The GT-2018-JPCPACES rating is usually lower than GDOT-Historical-CPACES rating 

for each route.  For example, I-16 and I-20 of GT-2018-JPCPACES rating are 73.15 and 

80.33, which are lower than 84.4 and 93.8 of GDOT-2016-CPACES rating, respectively.   

The average faulting and IRI are usually similar between GT-2018-JPCPACES rating 

and GDOT-Historical-CPACES rating, though the data collection methods are not the 

same.  For example, I-20 has a relatively low value of average faulting and IRI compared 

to I-16, so both GT-2018-JPCPACES rating and GDOT-2016-CPACES rating gave a low 

value of average faulting and IRI for I-20 but gave a high value of average faulting and 

IRI for I-16.   

The average number of total cracked slabs (including T1, T2, L1, L2, SS, CC), joint of 

spall and the average percentage of shoulder distress from GT-2018-JPCPACES results 

usually greater than GDOT-Historical-CPACES results, except the locations where 

Start - End Avgs. Fault Avgs. IRI Avgs. T1 Avgs. T2 Avgs. SS Avgs. CC Avgs. L1 Avgs. L2 Joint Spall Shoulder 

(mm) (m/km) BS L1 (#) (#) (#) (#) (%)

GT_2018 73.2 0.76 1.14 2.0 6.6 5.3 0.6 9.6 17.4 6.8 0.2

CPACES_2016 84.4 0.71 1.03 6.1 21.3 0.7 1.8 0.0

GT_2018 87.3 1.67 1.21 1.0 1.4 0.2 0.2 0.9 0.3 0.4 0.1

CPACES_2017 89.3 1.48 0.90 10.8 10.3 1.0 0.3 0.0

GT_2018 80.3 1.35 1.36 0.7 3.3 2.2 0.5 0.7 1.4 6.4 1.5

CPACES_2016 93.8 1.46 1.24 1.8 0.8 0.4 0.8 0.9

GT_2018 81.4 0.88 1.53 0.6 1.3 0.5 0.8 1.5 0.6 13.8 3.5

CPACES_2015 90.0 1.11 1.48 0.0 0.0 0.0 3.0 0.0

GT_2018 80.5 0.89 1.48 0.3 5.4 0.8 0.5 0.4 0.1 7.8 1.9

CPACES_2016 90.1 0.54 1.26 3.7 0.4 0.0 0.0 0.0

GT_2018 83.1 1.04 1.45 0.6 1.1 1.4 0.4 1.6 1.9 8.6 2.1

CPACES_2016 94.1 0 1.24 1.2 1.3 0.0 1.6 0.0

GT_2018 53.7 2.28 1.79 0.7 3.3 1.3 1.1 0.7 1.1 20.4 3.8

CPACES_2017 66.4 2.28 1.76 7.7 3.0 0.8 15.6 0.0

GT_2018 MP31 - MP40 & 89.3 0.65 1.20 0.3 1.7 0.6 0.1 1.0 0.3 3.9 0.2

CPACES_2017 MP98 - MP164 93.0 0 1.12 2.5 0.2 0.0 0.0 0.0

MP9

MP150 MP155-I85

I75

MP0 - MP24

MP0 - MP166

MP0 - MP9

MP0 MP9-

MP5 -

I985

I16

I675

I520

I185

Broken Slabs Level 2 (#)

I20 MP113 - MP201

Type Route
Rating

0.2

3.3

0.7

0.6

0.9

0.5

0.0

0.1
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pavement maintenance was conducted (e.g. I-985 had slab replacement before Dec. 

2018).   

The GDOT-Historical-CPACES is more likely to count L2 as L1 and broken slabs level 2 

as broken slabs level 1.  For example, GT-2018-JPCPACES results indicated an average 

of 9.55 L1/mile and 17.37 L2/mile but GDOT-2016-CPACES revealed an average of 

21.3 L1/mile and 0.73 L2/mile on I-20.  The same situation also happened for broken 

slabs.   GT-2018-JPCPACES results shown average 1.97 broken slabs level 1 (T1)/mile 

and average 12.56 broken slabs level 2 (T2 + SS + CC)/mile, but GDOT-2016-CPACES 

shown average 6.11 broken slabs level 1/mile and 0.57 broken slabs level2.  This is 

probably due to the difference in survey procedure between GT-JPCPACES and 

CPACES.  As slab classification method mentioned above in JPCPACES distress 

extraction paragraph, the enhanced slab classification method is more objective compared 

to the traditional subjective CPACES.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

93 

CHAPTER 7. SMOOTHNESS EVALUATION USING 3D 

PAVEMENT DATA 

METHOD FOR IRI MEASUREMENT USING 3D LASER DATA 

Chapter 2 described the procedure for 3D pavement data collection, which was used to 

estimate the pavement’s international roughness index (IRI). The IRI for the left and right 

wheelpaths using the quarter-car model, as well as the half-car roughness index (HRI) 

was calculated (Sayers, 1989) for each 1-mile segment by the following steps: 

1) The longitudinal pavement profile was extracted from the 3D pavement data. 

2) A low-pass filter of 30Hz was applied to mitigate high-frequency noise from the 

obtained profile.  

3) The filtered longitudinal profile was saved in a .ppf format. This is a commonly used 

format used for pavement profile information and is compatible with ProVal. 

4) The IRI for the left and right wheelpaths and HRI was calculated from the filtered 

longitudinal profile data for each 5-meter interval. 

5) The IRI value estimates for each 1-mile segment were aggregated to provide the IRI 

value for that segment. 

The following sections present the IRI validation procedure to ensure that the values of 

IRI obtained from the GTSV are reasonable. The first assessment is the major one 

through which a rigorous and quantitative field validation was performed by comparing 

GTSV to GDOT laser profilers in GDOT’s asphalt and concrete IRI calibration and 

validations sites. The second assessment was a qualitative validation by comparing 



 

94 

GTSV with Pathway’s IRI data to make sure the trend is reasonable. However, note that 

the purpose of the latter section is not to evaluate the quality of Pathway's IRI data.    

FIELD VALIDATION WITH GDOT’S PROFILER 

Validation of the method for IRI measurement was completed by comparison with IRI 

values obtained using AASHTO R56 (AASHTO, 2014) and certified GDOT Profilers 

(Figure 7-1) on the GDOT test sections. The GDOT Profilers comprised a system of 7 

laser scanners affixed to the front bumper of a vehicle, which captured a thin longitudinal 

profile of the pavement surface used to estimate the IRI. 

 

Figure 7-1. Photo. GDOT Profiler. 

On February 14, 2019, pavement condition data was collected using both the GDOT 

profiler and the GTSV on two test sections (one asphalt and one concrete). The asphalt 

test section was located inside Middle Georgia Regional Airport near Macon, Georgia,  

(Figure 7-2 (b)) and the concrete test section was located on U.S. Route 41 near 

Barnesville, Georgia  (Figure 7-2(a)). The test sections were 0.1 mile (528 feet) long, 

with 500-foot buffers on each side. The test sections were marked with reflective tape, as 
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shown in figure Figure 7-2 (b), which would be easily visible in both the GDOT 

profiler's longitudinal profiles as well as the range images from the GTSV's laser scanner. 

The end points of the buffers were marked with traffic cones (Figure 7-2 (a)). Each test 

section was covered in multiple runs by both the GDOT Profiler and the GTSV. 

 

     

A. Subfigure of concrete test section           B. Subfigure of asphalt test section 

Figure 7-2. Photos.Test sections for IRI validation. 

First, the repeatability of the IRI estimates from data collected using the GTSV was 

evaluated. Each test section was collected in 10 runs using the GTSV. The runs were 

manually registered to align them by locating the reflective strip at the start of the test 

section in the intensity images for each run. The IRI was then estimated. The IRI 

estimated from each run for the left and right wheelpaths from the asphalt test section is 
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given in Figure 7-3. Run 7 was omitted as the vehicle path was askew during that run. 

Qualitatively, the repeatability of the estimated IRI can be observed especially in the 

features at Segments 13-23 in the left wheel path and Segments 13-22 in the right wheel 

path. Quantitatively, the Pearson correlation between each series of IRI values derived 

from each run was calculated. As shown in Figure 7-4, there is generally a high 

correlation between any two runs, with an average correlation of 0.7912 for the left wheel 

path and 0.7876 for the right wheel path. 
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A. Subfigure of left wheel path 

 

B. Subfigure of right wheel path 

 

Figure 7-3. Graphs. IRI estimated using GTSV data. 
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A. Subfigure of left wheel path 

 

 
B. Subfigure of right wheel path 

Figure 7-4. Graphs. Correlation between IRI estimated from different GTSV runs. 
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Second, the accuracy of IRI estimation using the GTSV was evaluated. GDOT provided 

the longitudinal profiles collected using the GDOT Profilers, which were used to 

determine the IRI for each wheelpath individually using ProVal. As the GDOT Profilers 

were certified, this can be considered as the ground truth IRI values. Similarly, the IRI 

was estimated using runs of data collected using the GTSV. The calculated IRI from each 

device is given in Table 7-1. The difference between the average IRI estimates is -0.58 

in/mi for the left wheel path and 2.57 in/mi for the right wheel path. These are generally 

very low error values. To put these values in context, the ride quality classifications for 

different IRI values as defined by the Federal Highway Administration (FHWA) and the 

New York State Department of Transportation (NYSDOT) are given in Figure 7-5. It can 

be observed that the slab size for the classification levels is much larger than the 

differences in IRI values estimated by the profiler and the GTSV. Thus, it can be 

concluded that the GTSV provides an accurate estimate of the pavement IRI for the 

purposes of pavement condition assessment and maintenance. 

Table 7-1. IRI from GDOT profiler and GTSV. 

Run 
GDOT IRI left 

(in/mi) 

GTSV IRI left 

(in/mi) 

GDOT IRI right 

(in/mi) 

GTSV IRI right 

(in/mi) 

1 62.16 62.07 61.13 62.57 

2 63.06 61.38 62.01 61.60 

3 63.13 63.63 60.86 64.17 

4 63.26 64.42 60.63 65.72 

5 62.87 61.91 61.37 64.83 

6 63.35 60.92 61.86 64.38 

Average 62.97 62.39 61.31 63.88 
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Figure 7-5. Matrix. Rid quality classification by FHWA and NYSDOT. 

 

COMPARISON WITH PATHWAY DATA 

Pathway data was used to estimate the IRI for a test section on I-85 northbound (MP34-

57) from 2013-2015. This section compares the IRI estimated using this data with IRI 

estimates using the GTSV in 2017-2018. Although the years do not have any overlap, the 

IRI does not change drastically over this time duration, as shown in Figure 7-6.  

 

Figure 7-6. Graph. IRI obtained from Pathway and GTSV. 
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GTSV data from 2017 and 2018 were compared. The average standard deviation between 

the IRI values estimated for each mile was 4.65 in/mi, with the highest standard deviation 

occurring at MP 41-42 of 9.51 in/mi. 

PROCESSED RESULTS FOR INTERSTATE HIGHWAY 

The HRI was processed for all the interstate routes collected by the GTSV, including 

both asphalt and concrete pavements, and the results were mapped as shown in Figure 

7-8. HRI values were computed for each 1-mile segment along the route and displayed 

according to the categories defined by FHWA IRI requirements shown in Figure 7-5, 

which were multiplied by 0.8 to obtain the corresponding HRI categories (Sayers, 1989).  

As shown in Figure 7-7, 78% of the interstate fell into the “Very Good” and “Good” 

categories defined by FHWA with an HRI value of less than 76 in/mile, with few 

exceptions of higher HRI on I-16.  

 

Figure 7-7. Chart. Georgia Interstates HRI distribution according to categories 

defined by FHWA. 
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Figure 7-8. Map. HRI measurements of Georgia’s interstate routes. 

SUMMARY 

In this chapter, the method for processing IRI was described. Validation tests for 

processing IRI were conducted in February 2019 with Qutais Hannah, Jimmy Norwood, 

and Nathan Johnson of the Office of Materials and Testing. A comparison with historical 

IRI data from Pathway was also conducted. After processing the HRI values for all 

interstate routes, most of them were categorized as either “Very Good” or “Good” 

according the criteria defined by FHWA. 
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CHAPTER 8. CONCLUSIONS AND 

RECOMMENDATIONS  

CONCLUSIONS 

 As a continuous effort of the previous research project (RP 15-11), this research project 

conducted sign inventory and condition assessment on Georgia’s interstate highways 

using 2D imaging and 3D LiDAR.  A novel mobile-LiDAR-based sign retro-reflectivity 

condition assessment method was also validated, and a case study using selected signs on  

I-285 was conducted to demonstrate the feasibility of the proposed method. Through this 

research project, it is further confirmed that the proposed method is very promising and 

can  provide a cost-effective means for sign inventory and retro-reflectivity condition 

assessment using 2D imaging and 3D LiDAR. After the completion of the first GDOT-

sponsored research project (RP 15-11), which showcased the successful implementation 

of 3D technology to evaluate the pavement condition of Georgia's interstate highways, it 

has helped promote the adoption of this technology nation-wide. Thus, a survey reported 

in 2017 shows that eighteen states have already adopted the 3D automated data collection 

system, and seventeen states have indicated that they plan to use it within the next two 

years (NCHRP 501, 2017). This project further proves the abilities of this technology and 

justifies the need to proceed with its implementation as a cost-effective method for 

pavement condition survey.  As a result, in this research project, asphalt pavement 

condition evaluation, PCC (JPCP) pavement condition evaluation, and IRI measurement 

was conducted on the entire Georgia’s interstate highways using 3D sensing technology. 

Overall, it helps advance  GDOT’s pavement management system by enhancing the 
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accuracy of Georgia’s interstate long-term maintenance and rehabilitation planning and 

programming. The following summarize the major findings from this research project. 

Sign inventory and condition assessment 

• There were 21,427 traffic signs inventoried in 2018 along all the interstate highways 

using a procedure that makes use of previously collected data (2015 Sign Inventory). 

The guide signs make up 65% (13,969 signs) of the total sign population on the 

interstate. The rest of the population consists of 4,465 regulatory signs, 2,717 warning 

signs, and 276 other signs (temporary signs and signs with no identifiable MUTCD 

codes). 

• There are 1,256 signs (6% of the overall traffic sign population) in poor conditions 

(such as surface failure, post failure, obstructed by vegetation, and dirty) that require 

maintenance .  Surface failure of the signs make up the largest number of signs in 

poor condition in 2018; this is followed by signs that are dirty. The next two cases are 

signs that are obstructed, and signs whose posts failed. Further studies are needed to 

determine the number of signs in poor condition in 2015 that were not repaired until 

2018 and to determine the number of additional signs that dropped into poor 

condition 

• There are 4,135 overhead signs (19% of the overall traffic sign population). They 

have a high potential risk of failure and require frequent monitoring and condition 

assessment.  

• There is an increase of 1.87% in the number of signs in the 2018 Sign Inventory 

compared to the 2015 Sign Inventory. The largest increase in a number of signs is 



 

106 

attributable to  regulatory signs (4%, 188 signs). One of the noted reasons for change 

in this category comes from the “Prohibited Holding Mobile Devices While Driving” 

signs. These signs were installed after 2015 when the state of Georgia passed the 

Hands-Free Georgia Law (HB673). The increase in the number of  signs in 2018 is 

also due to  102  signs on I-516 in Savannah, Gorgia that  were not counted in the 

2015 Sign Inventory.   

Sign retro-reflectivity condition assessment 

• A new method was developed to assess the sign retro-reflectivity condition category 

(good, poor, and uncertain) using a  sign’s point cloud data collected by mobile 

LIDAR technology. The two main steps involved in this method include 1) 

computing the retro intensity statistics (such as median and 25th percentile) for the 

sign point cloud data, and 2) classifying the sign retro-reflectivity condition category 

(good, poor, uncertain) based on the proposed minimum retro-intensity (MR) criteria.  

• The proposed method was validated using the nighttime visual inspection method and 

by using sign data  collected by  GDOT. The assessment was performed by a GDOT 

inspector who classified the signs as “acceptable” or  “unacceptable” based on the 

retro-reflectivity. All the signs that failed the nighttime visual assessment method 

were correctly classified as “poor” by the proposed method; among the signs that 

passed, three signs were categorized as “uncertain” due to localized defects on the 

sign, such as dirt, cracking, or  graffiti.  

• A case study was performed on I-285 to assess the feasibility of the proposed method 

by collecting LIDAR data of selected interstate traffic signs.  Among 338 selected 
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signs, 67% of the signs were classified as having good retro-reflectivity, and 33% of 

the signs were classified as “poor” or “uncertain” retro-reflectivity. Using this result, 

the GDOT inspectors only had to focus on the remaining 33% that were  in the poor 

or the uncertain category to visually assess and determine if they require replacement 

or other corrective actions (such as cleaning). Overall, the proposed method can 

potentially reduce the GDOT engineers’ inspection efforts by approximately 60% and 

reduce their exposure to unsafe assessment conditions on the road.  

• A study was conducted to assess the retro-reflectivity deterioration behavior of 

selected signs using the retro-intensity data collected on them in the past 4 years. 

Promising trends for retro-intensity behavior change can be observed on few signs. 

However, due to the unpredictable factors of dirt accumulation, rains, and cleaning of 

signs by the maintenance crews, the deterioration trends may not be consistent for all 

the signs in the field. Therefore, it is recommended that the retro-intensity 

deterioration analysis be performed under controlled conditions (cleaning the signs 

before retro-intensity measurement) to yield more consistent results. 

Asphalt Pavement Condition Assessment 

• The COPACES ratings were computed for 1,289 miles of asphalt pavement by using 

the streamlined method for asphalt pavement condition evaluation. 

• Overall, the pavement condition on interstate highways in Georgia is acceptable, 

except for a few sections. The project ratings range from a low of 60 to a high of 99, 

with an average rating of 82 for all projects. There are 16 projects with a rating of 70 

or below that  require  maintenance. 
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• The overall deduct value related to load cracking and block cracking are relatively 

low, most of them being below 6 points, indicating that a low-extent and low-severity 

level is mostly identified along the surveyed pavements. Similarly, the rutting deduct 

values were mostly below 5 points, indicating an average rutting of below ¼ inches. 

However, raveling is the major contributor to the project rating reduction with around 

75% of the projects having a raveling deduct value of 10% or above, which indicates 

more than 36% extent of Severity Level 1, or more than 15% at Severity Level 2. 

PCC (JPCP) Pavement Condition Assessment 

• The JPCP ratings (JPCPACES) were computed for a total of 988 survey segments, 

and each segment represented 1 mile.  The overall JPCP condition on Georgia’s 

interstate highway is relatively acceptable with an average rating of 83.7 for all 

segments.  There are 178 segments with a rating below 70, which potentially 

indicates a need for maintenance or replacement.  The poor performance JPCP 

segments are located at I-75 north of Atlanta, I-20 west of Atlanta, I-20 east of 

Atlanta from MP 130-MP 150, I-16 near Macon and I-16 from MP 80 to MP 90. 

• The deduct value for the faulting index is highly correlated to the deduct value for 

IRI, which indicates the faulting index greatly impacts the ride quality.  Moreover, it 

is found that the high deduct value for longitudinal cracks was mostly concentrated 

on I-20 west of Atlanta.   The high deduct value for shattered slabs was evenly 

distributed in all the segments with low JPCPACES ratings.   
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Smoothness Evaluation 

• The validation of the method for IRI measurement was conducted by comparing  the 

IRI values obtained by using the GTSV and by using a GDOT Profiler on two GDOT 

test sections.  First, the repeatability test of the GTSV resulted in a high correlation 

between any two runs with an average correlation of 0.7912 for the left wheel path 

and 0.7876 for the right wheel path.  Second, the difference of the average IRI 

collected by the GTSV and a GDOT profiler is -0.58 in/mi for the left wheel path and 

2.57 in/mi for the right wheel path, which shows a high accuracy of IRI measurement 

using the GTSV. 

• The GTSV data from 2017 and 2018 were compared with the data collected by 

Pathway on I-85 northbound (MP 34 – MP 57). The average standard deviation 

between the IRI values estimated for each mile was 4.65 in/mi, with the highest 

standard deviation occurring at MP 41-42 of the 9.51 in/mi section.  

• The HRI was processed for all the interstate route data collected by the GTSV, 

including both asphalt and concrete pavements. Seventy-eight percent of the interstate 

fell into the “Very Good” and “Good” categories according to the FHWA definition 

with an HRI value of less than 76 in/mile; there were a few exceptions of higher HRI, 

mainly on I-16. 
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RECOMMENDATIONS FOR IMPLEMENTATION 

Sign Inventory and Condition Assessment 

5) GDOT can take proactive action using the research outcomes from this project to 

locate and perform timely maintenance for the signs in poor condition in each  

district.  Based on the sign inventory outcomes, along with conditions, it is 

recommended that GDOT districts use the research outcomes (different categories 

of poor sign conditions and their locations) to actively perform maintenance and 

replacement to ensure roadway safety. If the  districts are limited by resources for 

maintenance, it is recommended they  perform the maintenance and replacement 

on the regulatory signs first.  

6) GDOT can also use the collected interstate highway sign inventory from this 

research project to assist the GDOT Office of Transportation Data (OTD) in 

performing QA/QC on the current statewide sign inventory effort. 

7) From the results of I-285 case study on selected signs, we can clearly see that 

GDOT can potentially reduce sign retro-reflectivity condition assessment effort 

by approximately 60% on I-285 by screening out the “good” retro-reflectivity 

signs.  GDOT inspectors may only need to assess the remaining 40% of signs in 

the “poor” and “uncertain” categories  to determine if they require replacement or 

cleaning. To validate the accuracy of the results, it is recommended that GDOT 

verify the research outcomes from the I-285 case study by assessing the selected 

signs in the field with its  inspectors and perform cleaning or replacement actions 

on the signs that were identified as “poor” or “uncertain.” 
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8) It is further recommended that GDOT implement the sign retro-reflectivity 

condition assessment as proposed in this research project at the network-level 

using the safe, cost-effective mobile-LiDAR data collected at highway speed after 

the field validation. 

Pavement Condition Assessment 

 

5) Knowing that GDOT has a new production operation with an outsourced, 

automated collection method using 3D sensing technology, it is recommended 

that  a quality assurance procedure be developed to ensure the data quality needed 

to support the MR&R decision-making.  Validating the accuracy and reliability of 

the GTSV in pavement condition evaluation shows a great potential for  use  by 

GDOT as a rigorous method to evaluate the data quality provided by the vendors 

as part of the data quality management plan.  

6) It is recommended that the high granularity of 3D pavement surface data be 

leveraged not only for evaluating the network condition, but also for maintenance 

and rehabilitation decisions at the project level. For example, 100-ft aggregated 

pavement distresses can be obtained and used for determining coring locations 

required by the Office of Materials and Testing for pavement design evaluation. 

Moreover, this data can also be used to define optimal termini for localized 

maintenance applications, such as deep patching of asphalt pavements, or be used 

to estimate the quantity of broken slab replacements for JPCP needed.  

7) Because of having accurate pavement condition data, it is recommended this 3D 

and pavement distress data be used to better study pavement deterioration 
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behavior and develop a reliable pavement performance forecasting model. For 

example, a raveling deterioration and forecasting study can be developed to 

improve GDOT’s predictive and preventive maintenance, such as  fog seal, 

micro-milling, and thin overlay optimal timing. Similarly, the slab-level pavement 

distresses of JPCP can be used to study the change of slab conditions and develop 

accurate forecasting models to support MR&R decisions, including broken slab 

replacement.  

8) After validating the IRI accuracy collected by the GTSV, it is recommended that  

GDOT use 3D pavement data, already collected for measurement of cracking, 

rutting, etc. to compute IRI to reduce the additional effort and cost required to 

compute IRI data using the laser profilers.  
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